edbeeching HF staff commited on
Commit
1f74863
·
1 Parent(s): d08fb46

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -11,16 +11,16 @@ model-index:
11
  type: reinforcement-learning
12
  name: reinforcement-learning
13
  dataset:
14
- name: doom_health_gathering
15
- type: doom_health_gathering
16
  metrics:
17
  - type: mean_reward
18
- value: 21.00 +/- 0.00
19
  name: mean_reward
20
  verified: false
21
  ---
22
 
23
- A(n) **APPO** model trained on the **doom_health_gathering** environment.
24
 
25
  This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
  Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
@@ -38,7 +38,7 @@ python -m sample_factory.huggingface.load_from_hub -r edbeeching/rl_course_vizdo
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
- python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
@@ -49,7 +49,7 @@ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
- python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
 
11
  type: reinforcement-learning
12
  name: reinforcement-learning
13
  dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 8.07 +/- 1.90
19
  name: mean_reward
20
  verified: false
21
  ---
22
 
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
 
25
  This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
  Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
 
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
+ python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
 
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
+ python -m .usr.local.lib.python3.8.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.