File size: 3,227 Bytes
9276798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130d438
 
9276798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
language: es
tags:
- sagemaker
- vit
- ImageClassification
- generated_from_trainer
license: apache-2.0
datasets:
- cifar100
metrics:
- accuracy
model-index:
- name: vit_base-224-in21k-ft-cifar100
  results:
  - task:
        name: Image Classification
        type: image-classification
    dataset:
        name: "Cifar100" 
        type: cifar100
    metrics:
       - name: Accuracy
         type: accuracy
         value: 0.9148
---

# Model vit_base-224-in21k-ft-cifar100

## **A finetuned model for Image classification in Spanish**

This model was trained using Amazon SageMaker and the Hugging Face Deep Learning container,
The base model is **Vision Transformer (base-sized model)** which  is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.[Link to base model](https://huggingface.co/google/vit-base-patch16-224-in21k) 

## Base model citation
### BibTeX entry and citation info

```bibtex
@misc{wu2020visual,
      title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, 
      author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
      year={2020},
      eprint={2006.03677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

## Dataset
[Link to dataset description](http://www.cs.toronto.edu/~kriz/cifar.html)

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton


The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
This dataset,CIFAR100, is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs).

Sizes of datasets:
- Train dataset: 50,000
- Test dataset: 10,000


## Intended uses & limitations

This model is intented for Image Classification.


## Hyperparameters
    {
    "epochs": "5",
    "train_batch_size": "32",    
    "eval_batch_size": "8",
    "fp16": "true",
    "learning_rate": "1e-05",
    }

## Test results

- Accuracy = 0.9148


## Model in action

### Usage for Image Classification

```python
from transformers import ViTFeatureExtractor, ViTModel
from PIL import Image
import requests

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('edumunozsala/vit_base-224-in21k-ft-cifar100')
inputs = feature_extractor(images=image, return_tensors="pt")

outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
```

Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)