File size: 4,593 Bytes
e0939f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e175dc
e0939f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e175dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
language:
- en
- fr
- ru
- de
- ja
- ko
- zh
- it
- uk
- multilingual
- code
library_name: transformers
tags:
- mistral
- gistral
- gistral-16b
- multilingual
- code
- 128k
- metamath
- grok-1
- anthropic
- openhermes
- instruct
- merge
- llama-cpp
- gguf-my-repo
base_model:
- Gaivoronsky/Mistral-7B-Saiga
- snorkelai/Snorkel-Mistral-PairRM-DPO
- OpenBuddy/openbuddy-mistral2-7b-v20.3-32k
- meta-math/MetaMath-Mistral-7B
- HuggingFaceH4/mistral-7b-grok
- HuggingFaceH4/mistral-7b-anthropic
- NousResearch/Yarn-Mistral-7b-128k
- ajibawa-2023/Code-Mistral-7B
- SherlockAssistant/Mistral-7B-Instruct-Ukrainian
datasets:
- HuggingFaceH4/grok-conversation-harmless
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
- meta-math/MetaMathQA
- emozilla/yarn-train-tokenized-16k-mistral
- snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- teknium/openhermes
- lksy/ru_instruct_gpt4
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch
pipeline_tag: text-generation
---

# Gistral-16B-Q4_K_M-GGUF
This model was converted to GGUF format from [`ehristoforu/Gistral-16B`](https://huggingface.co/ehristoforu/Gistral-16B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ehristoforu/Gistral-16B) for more details on the model.
## Use with llama.cpp

Install llama.cpp through brew.

```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.

CLI:

```bash
llama-cli --hf-repo ehristoforu/Gistral-16B-Q4_K_M-GGUF --model gistral-16b.Q4_K_M.gguf -p "The meaning to life and the universe is"
```

Server:

```bash
llama-server --hf-repo ehristoforu/Gistral-16B-Q4_K_M-GGUF --model gistral-16b.Q4_K_M.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

```
git clone https://github.com/ggerganov/llama.cpp &&             cd llama.cpp &&             make &&             ./main -m gistral-16b.Q4_K_M.gguf -n 128
```

# Gistral 16B (Mistral from 7B to 16B)

![logo](assets/logo.png)

We created a model from other cool models to combine everything into one cool model.


## Model Details

### Model Description 

- **Developed by:** [@ehristoforu](https://huggingface.co/ehristoforu)
- **Model type:** Text Generation (conversational)
- **Language(s) (NLP):** English, French, Russian, German, Japanese, Chinese, Korean, Italian, Ukrainian, Code
- **Finetuned from model:** [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)


## How to Get Started with the Model

Use the code below to get started with the model.

```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "ehristoforu/Gistral-16B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```


## About merge

Base model: mistralai/Mistral-7B-Instruct-v0.2

Merge models:
- Gaivoronsky/Mistral-7B-Saiga
- snorkelai/Snorkel-Mistral-PairRM-DPO
- OpenBuddy/openbuddy-mistral2-7b-v20.3-32k
- meta-math/MetaMath-Mistral-7B
- HuggingFaceH4/mistral-7b-grok
- HuggingFaceH4/mistral-7b-anthropic
- NousResearch/Yarn-Mistral-7b-128k
- ajibawa-2023/Code-Mistral-7B
- SherlockAssistant/Mistral-7B-Instruct-Ukrainian

Merge datasets:
- HuggingFaceH4/grok-conversation-harmless
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
- meta-math/MetaMathQA
- emozilla/yarn-train-tokenized-16k-mistral
- snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- teknium/openhermes
- lksy/ru_instruct_gpt4
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch