File size: 4,593 Bytes
e0939f8 5e175dc e0939f8 5e175dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
language:
- en
- fr
- ru
- de
- ja
- ko
- zh
- it
- uk
- multilingual
- code
library_name: transformers
tags:
- mistral
- gistral
- gistral-16b
- multilingual
- code
- 128k
- metamath
- grok-1
- anthropic
- openhermes
- instruct
- merge
- llama-cpp
- gguf-my-repo
base_model:
- Gaivoronsky/Mistral-7B-Saiga
- snorkelai/Snorkel-Mistral-PairRM-DPO
- OpenBuddy/openbuddy-mistral2-7b-v20.3-32k
- meta-math/MetaMath-Mistral-7B
- HuggingFaceH4/mistral-7b-grok
- HuggingFaceH4/mistral-7b-anthropic
- NousResearch/Yarn-Mistral-7b-128k
- ajibawa-2023/Code-Mistral-7B
- SherlockAssistant/Mistral-7B-Instruct-Ukrainian
datasets:
- HuggingFaceH4/grok-conversation-harmless
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
- meta-math/MetaMathQA
- emozilla/yarn-train-tokenized-16k-mistral
- snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- teknium/openhermes
- lksy/ru_instruct_gpt4
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch
pipeline_tag: text-generation
---
# Gistral-16B-Q4_K_M-GGUF
This model was converted to GGUF format from [`ehristoforu/Gistral-16B`](https://huggingface.co/ehristoforu/Gistral-16B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ehristoforu/Gistral-16B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo ehristoforu/Gistral-16B-Q4_K_M-GGUF --model gistral-16b.Q4_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo ehristoforu/Gistral-16B-Q4_K_M-GGUF --model gistral-16b.Q4_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m gistral-16b.Q4_K_M.gguf -n 128
```
# Gistral 16B (Mistral from 7B to 16B)
![logo](assets/logo.png)
We created a model from other cool models to combine everything into one cool model.
## Model Details
### Model Description
- **Developed by:** [@ehristoforu](https://huggingface.co/ehristoforu)
- **Model type:** Text Generation (conversational)
- **Language(s) (NLP):** English, French, Russian, German, Japanese, Chinese, Korean, Italian, Ukrainian, Code
- **Finetuned from model:** [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
## How to Get Started with the Model
Use the code below to get started with the model.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "ehristoforu/Gistral-16B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## About merge
Base model: mistralai/Mistral-7B-Instruct-v0.2
Merge models:
- Gaivoronsky/Mistral-7B-Saiga
- snorkelai/Snorkel-Mistral-PairRM-DPO
- OpenBuddy/openbuddy-mistral2-7b-v20.3-32k
- meta-math/MetaMath-Mistral-7B
- HuggingFaceH4/mistral-7b-grok
- HuggingFaceH4/mistral-7b-anthropic
- NousResearch/Yarn-Mistral-7b-128k
- ajibawa-2023/Code-Mistral-7B
- SherlockAssistant/Mistral-7B-Instruct-Ukrainian
Merge datasets:
- HuggingFaceH4/grok-conversation-harmless
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized_fixed
- HuggingFaceH4/cai-conversation-harmless
- meta-math/MetaMathQA
- emozilla/yarn-train-tokenized-16k-mistral
- snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- teknium/openhermes
- lksy/ru_instruct_gpt4
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch |