ejenner commited on
Commit
ca7bd2f
·
verified ·
1 Parent(s): 05189df

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "MistralForCausalLM",
5
+ "parent_library": "transformers.models.mistral.modeling_mistral"
6
+ },
7
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_dropout": 0.0,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": null,
20
+ "peft_type": "LORA",
21
+ "r": 8,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "down_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "k_proj",
29
+ "v_proj",
30
+ "gate_proj"
31
+ ],
32
+ "task_type": null
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29f504a327e8aefa2cfca2ef76d1956d71e4b047ffb295f93c492d8a51ed3609
3
+ size 75548136
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
@@ -0,0 +1,741 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.11676687747240067,
3
+ "best_model_checkpoint": "output/single/quirky_sciq_raw/checkpoint-2048",
4
+ "epoch": 6.540518962075848,
5
+ "eval_steps": 10000000000,
6
+ "global_step": 2048,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "eval_val_acc_stderr": 0.012937023555103245,
14
+ "eval_val_accuracy": 0.8282352941176471,
15
+ "eval_val_loss": 1.4692819118499756,
16
+ "eval_val_runtime": 32.1876,
17
+ "eval_val_samples_per_second": 26.408,
18
+ "eval_val_steps_per_second": 3.324,
19
+ "step": 1
20
+ },
21
+ {
22
+ "epoch": 0.0,
23
+ "eval_val_alice_acc_stderr": 0.01508756447132745,
24
+ "eval_val_alice_accuracy": 0.8891454965357968,
25
+ "eval_val_alice_loss": 1.4051198959350586,
26
+ "eval_val_alice_runtime": 16.4546,
27
+ "eval_val_alice_samples_per_second": 26.315,
28
+ "eval_val_alice_steps_per_second": 3.343,
29
+ "step": 1
30
+ },
31
+ {
32
+ "epoch": 0.0,
33
+ "eval_val_bob_acc_stderr": 0.02083661056330264,
34
+ "eval_val_bob_accuracy": 0.762589928057554,
35
+ "eval_val_bob_loss": 1.537455677986145,
36
+ "eval_val_bob_runtime": 16.6246,
37
+ "eval_val_bob_samples_per_second": 25.083,
38
+ "eval_val_bob_steps_per_second": 3.188,
39
+ "step": 1
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "eval_val_bob_gt_acc_stderr": 0.015341286771526373,
44
+ "eval_val_bob_gt_accuracy": 0.8896882494004796,
45
+ "eval_val_bob_gt_loss": 1.4268440008163452,
46
+ "eval_val_bob_gt_runtime": 16.763,
47
+ "eval_val_bob_gt_samples_per_second": 24.876,
48
+ "eval_val_bob_gt_steps_per_second": 3.162,
49
+ "step": 1
50
+ },
51
+ {
52
+ "epoch": 0.01,
53
+ "eval_val_acc_stderr": 0.012937023555103245,
54
+ "eval_val_accuracy": 0.8282352941176471,
55
+ "eval_val_loss": 1.4688091278076172,
56
+ "eval_val_runtime": 33.5257,
57
+ "eval_val_samples_per_second": 25.354,
58
+ "eval_val_steps_per_second": 3.192,
59
+ "step": 2
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "eval_val_alice_acc_stderr": 0.014948951634060766,
64
+ "eval_val_alice_accuracy": 0.8914549653579676,
65
+ "eval_val_alice_loss": 1.4036588668823242,
66
+ "eval_val_alice_runtime": 16.9829,
67
+ "eval_val_alice_samples_per_second": 25.496,
68
+ "eval_val_alice_steps_per_second": 3.239,
69
+ "step": 2
70
+ },
71
+ {
72
+ "epoch": 0.01,
73
+ "eval_val_bob_acc_stderr": 0.020979742126541488,
74
+ "eval_val_bob_accuracy": 0.7577937649880095,
75
+ "eval_val_bob_loss": 1.5361874103546143,
76
+ "eval_val_bob_runtime": 17.0578,
77
+ "eval_val_bob_samples_per_second": 24.446,
78
+ "eval_val_bob_steps_per_second": 3.107,
79
+ "step": 2
80
+ },
81
+ {
82
+ "epoch": 0.01,
83
+ "eval_val_bob_gt_acc_stderr": 0.015628947031815964,
84
+ "eval_val_bob_gt_accuracy": 0.8848920863309353,
85
+ "eval_val_bob_gt_loss": 1.4273743629455566,
86
+ "eval_val_bob_gt_runtime": 17.0684,
87
+ "eval_val_bob_gt_samples_per_second": 24.431,
88
+ "eval_val_bob_gt_steps_per_second": 3.105,
89
+ "step": 2
90
+ },
91
+ {
92
+ "epoch": 0.01,
93
+ "eval_val_acc_stderr": 0.012937023555103245,
94
+ "eval_val_accuracy": 0.8282352941176471,
95
+ "eval_val_loss": 1.469063401222229,
96
+ "eval_val_runtime": 33.7146,
97
+ "eval_val_samples_per_second": 25.212,
98
+ "eval_val_steps_per_second": 3.174,
99
+ "step": 4
100
+ },
101
+ {
102
+ "epoch": 0.01,
103
+ "eval_val_alice_acc_stderr": 0.014948951634060766,
104
+ "eval_val_alice_accuracy": 0.8914549653579676,
105
+ "eval_val_alice_loss": 1.4030324220657349,
106
+ "eval_val_alice_runtime": 17.0492,
107
+ "eval_val_alice_samples_per_second": 25.397,
108
+ "eval_val_alice_steps_per_second": 3.226,
109
+ "step": 4
110
+ },
111
+ {
112
+ "epoch": 0.01,
113
+ "eval_val_bob_acc_stderr": 0.020908628616120924,
114
+ "eval_val_bob_accuracy": 0.7601918465227818,
115
+ "eval_val_bob_loss": 1.5368480682373047,
116
+ "eval_val_bob_runtime": 17.0771,
117
+ "eval_val_bob_samples_per_second": 24.419,
118
+ "eval_val_bob_steps_per_second": 3.104,
119
+ "step": 4
120
+ },
121
+ {
122
+ "epoch": 0.01,
123
+ "eval_val_bob_gt_acc_stderr": 0.015486230123570196,
124
+ "eval_val_bob_gt_accuracy": 0.8872901678657075,
125
+ "eval_val_bob_gt_loss": 1.4271358251571655,
126
+ "eval_val_bob_gt_runtime": 17.0847,
127
+ "eval_val_bob_gt_samples_per_second": 24.408,
128
+ "eval_val_bob_gt_steps_per_second": 3.102,
129
+ "step": 4
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "eval_val_acc_stderr": 0.012901796011470488,
134
+ "eval_val_accuracy": 0.8294117647058824,
135
+ "eval_val_loss": 1.469651699066162,
136
+ "eval_val_runtime": 33.6873,
137
+ "eval_val_samples_per_second": 25.232,
138
+ "eval_val_steps_per_second": 3.176,
139
+ "step": 8
140
+ },
141
+ {
142
+ "epoch": 0.03,
143
+ "eval_val_alice_acc_stderr": 0.01480820963044188,
144
+ "eval_val_alice_accuracy": 0.8937644341801386,
145
+ "eval_val_alice_loss": 1.4056396484375,
146
+ "eval_val_alice_runtime": 17.0533,
147
+ "eval_val_alice_samples_per_second": 25.391,
148
+ "eval_val_alice_steps_per_second": 3.225,
149
+ "step": 8
150
+ },
151
+ {
152
+ "epoch": 0.03,
153
+ "eval_val_bob_acc_stderr": 0.02083661056330264,
154
+ "eval_val_bob_accuracy": 0.762589928057554,
155
+ "eval_val_bob_loss": 1.5359561443328857,
156
+ "eval_val_bob_runtime": 17.0852,
157
+ "eval_val_bob_samples_per_second": 24.407,
158
+ "eval_val_bob_steps_per_second": 3.102,
159
+ "step": 8
160
+ },
161
+ {
162
+ "epoch": 0.03,
163
+ "eval_val_bob_gt_acc_stderr": 0.015341286771526373,
164
+ "eval_val_bob_gt_accuracy": 0.8896882494004796,
165
+ "eval_val_bob_gt_loss": 1.4263936281204224,
166
+ "eval_val_bob_gt_runtime": 17.0936,
167
+ "eval_val_bob_gt_samples_per_second": 24.395,
168
+ "eval_val_bob_gt_steps_per_second": 3.101,
169
+ "step": 8
170
+ },
171
+ {
172
+ "epoch": 0.05,
173
+ "eval_val_acc_stderr": 0.01297202990834543,
174
+ "eval_val_accuracy": 0.8270588235294117,
175
+ "eval_val_loss": 1.467901587486267,
176
+ "eval_val_runtime": 33.707,
177
+ "eval_val_samples_per_second": 25.217,
178
+ "eval_val_steps_per_second": 3.174,
179
+ "step": 16
180
+ },
181
+ {
182
+ "epoch": 0.05,
183
+ "eval_val_alice_acc_stderr": 0.014948951634060766,
184
+ "eval_val_alice_accuracy": 0.8914549653579676,
185
+ "eval_val_alice_loss": 1.4035195112228394,
186
+ "eval_val_alice_runtime": 17.0398,
187
+ "eval_val_alice_samples_per_second": 25.411,
188
+ "eval_val_alice_steps_per_second": 3.228,
189
+ "step": 16
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "eval_val_bob_acc_stderr": 0.020908628616120924,
194
+ "eval_val_bob_accuracy": 0.7601918465227818,
195
+ "eval_val_bob_loss": 1.535442590713501,
196
+ "eval_val_bob_runtime": 17.0913,
197
+ "eval_val_bob_samples_per_second": 24.398,
198
+ "eval_val_bob_steps_per_second": 3.101,
199
+ "step": 16
200
+ },
201
+ {
202
+ "epoch": 0.05,
203
+ "eval_val_bob_gt_acc_stderr": 0.015486230123570196,
204
+ "eval_val_bob_gt_accuracy": 0.8872901678657075,
205
+ "eval_val_bob_gt_loss": 1.4257303476333618,
206
+ "eval_val_bob_gt_runtime": 17.0928,
207
+ "eval_val_bob_gt_samples_per_second": 24.396,
208
+ "eval_val_bob_gt_steps_per_second": 3.101,
209
+ "step": 16
210
+ },
211
+ {
212
+ "epoch": 0.1,
213
+ "eval_val_acc_stderr": 0.012937023555103245,
214
+ "eval_val_accuracy": 0.8282352941176471,
215
+ "eval_val_loss": 1.4608973264694214,
216
+ "eval_val_runtime": 33.7015,
217
+ "eval_val_samples_per_second": 25.221,
218
+ "eval_val_steps_per_second": 3.175,
219
+ "step": 32
220
+ },
221
+ {
222
+ "epoch": 0.1,
223
+ "eval_val_alice_acc_stderr": 0.014948951634060766,
224
+ "eval_val_alice_accuracy": 0.8914549653579676,
225
+ "eval_val_alice_loss": 1.396742343902588,
226
+ "eval_val_alice_runtime": 17.0628,
227
+ "eval_val_alice_samples_per_second": 25.377,
228
+ "eval_val_alice_steps_per_second": 3.223,
229
+ "step": 32
230
+ },
231
+ {
232
+ "epoch": 0.1,
233
+ "eval_val_bob_acc_stderr": 0.02083661056330264,
234
+ "eval_val_bob_accuracy": 0.762589928057554,
235
+ "eval_val_bob_loss": 1.5283899307250977,
236
+ "eval_val_bob_runtime": 17.0927,
237
+ "eval_val_bob_samples_per_second": 24.396,
238
+ "eval_val_bob_steps_per_second": 3.101,
239
+ "step": 32
240
+ },
241
+ {
242
+ "epoch": 0.1,
243
+ "eval_val_bob_gt_acc_stderr": 0.015341286771526373,
244
+ "eval_val_bob_gt_accuracy": 0.8896882494004796,
245
+ "eval_val_bob_gt_loss": 1.4182281494140625,
246
+ "eval_val_bob_gt_runtime": 17.1142,
247
+ "eval_val_bob_gt_samples_per_second": 24.366,
248
+ "eval_val_bob_gt_steps_per_second": 3.097,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.16,
253
+ "learning_rate": 7.102272727272729e-07,
254
+ "loss": 1.4159,
255
+ "step": 50
256
+ },
257
+ {
258
+ "epoch": 0.2,
259
+ "eval_val_acc_stderr": 0.012937023555103245,
260
+ "eval_val_accuracy": 0.8282352941176471,
261
+ "eval_val_loss": 1.4041904211044312,
262
+ "eval_val_runtime": 33.716,
263
+ "eval_val_samples_per_second": 25.211,
264
+ "eval_val_steps_per_second": 3.174,
265
+ "step": 64
266
+ },
267
+ {
268
+ "epoch": 0.2,
269
+ "eval_val_alice_acc_stderr": 0.01480820963044188,
270
+ "eval_val_alice_accuracy": 0.8937644341801386,
271
+ "eval_val_alice_loss": 1.3375937938690186,
272
+ "eval_val_alice_runtime": 17.0702,
273
+ "eval_val_alice_samples_per_second": 25.366,
274
+ "eval_val_alice_steps_per_second": 3.222,
275
+ "step": 64
276
+ },
277
+ {
278
+ "epoch": 0.2,
279
+ "eval_val_bob_acc_stderr": 0.020908628616120924,
280
+ "eval_val_bob_accuracy": 0.7601918465227818,
281
+ "eval_val_bob_loss": 1.472985863685608,
282
+ "eval_val_bob_runtime": 17.1363,
283
+ "eval_val_bob_samples_per_second": 24.334,
284
+ "eval_val_bob_steps_per_second": 3.093,
285
+ "step": 64
286
+ },
287
+ {
288
+ "epoch": 0.2,
289
+ "eval_val_bob_gt_acc_stderr": 0.015194053258476493,
290
+ "eval_val_bob_gt_accuracy": 0.8920863309352518,
291
+ "eval_val_bob_gt_loss": 1.3589271306991577,
292
+ "eval_val_bob_gt_runtime": 17.1528,
293
+ "eval_val_bob_gt_samples_per_second": 24.311,
294
+ "eval_val_bob_gt_steps_per_second": 3.09,
295
+ "step": 64
296
+ },
297
+ {
298
+ "epoch": 0.32,
299
+ "learning_rate": 1.4204545454545458e-06,
300
+ "loss": 1.2902,
301
+ "step": 100
302
+ },
303
+ {
304
+ "epoch": 0.41,
305
+ "eval_val_acc_stderr": 0.013041386157171642,
306
+ "eval_val_accuracy": 0.8247058823529412,
307
+ "eval_val_loss": 0.819312572479248,
308
+ "eval_val_runtime": 33.8241,
309
+ "eval_val_samples_per_second": 25.13,
310
+ "eval_val_steps_per_second": 3.163,
311
+ "step": 128
312
+ },
313
+ {
314
+ "epoch": 0.41,
315
+ "eval_val_alice_acc_stderr": 0.014070292224264426,
316
+ "eval_val_alice_accuracy": 0.9053117782909931,
317
+ "eval_val_alice_loss": 0.73760586977005,
318
+ "eval_val_alice_runtime": 17.1095,
319
+ "eval_val_alice_samples_per_second": 25.308,
320
+ "eval_val_alice_steps_per_second": 3.215,
321
+ "step": 128
322
+ },
323
+ {
324
+ "epoch": 0.41,
325
+ "eval_val_bob_acc_stderr": 0.021322054283776665,
326
+ "eval_val_bob_accuracy": 0.7458033573141487,
327
+ "eval_val_bob_loss": 0.9024503231048584,
328
+ "eval_val_bob_runtime": 17.1531,
329
+ "eval_val_bob_samples_per_second": 24.311,
330
+ "eval_val_bob_steps_per_second": 3.09,
331
+ "step": 128
332
+ },
333
+ {
334
+ "epoch": 0.41,
335
+ "eval_val_bob_gt_acc_stderr": 0.015486230123570196,
336
+ "eval_val_bob_gt_accuracy": 0.8872901678657075,
337
+ "eval_val_bob_gt_loss": 0.7549682855606079,
338
+ "eval_val_bob_gt_runtime": 17.1491,
339
+ "eval_val_bob_gt_samples_per_second": 24.316,
340
+ "eval_val_bob_gt_steps_per_second": 3.091,
341
+ "step": 128
342
+ },
343
+ {
344
+ "epoch": 0.48,
345
+ "learning_rate": 2.1306818181818183e-06,
346
+ "loss": 0.8289,
347
+ "step": 150
348
+ },
349
+ {
350
+ "epoch": 0.64,
351
+ "learning_rate": 2.8409090909090916e-06,
352
+ "loss": 0.412,
353
+ "step": 200
354
+ },
355
+ {
356
+ "epoch": 0.8,
357
+ "learning_rate": 3.5511363636363636e-06,
358
+ "loss": 0.3014,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.82,
363
+ "eval_val_acc_stderr": 0.010954525472743861,
364
+ "eval_val_accuracy": 0.8847058823529412,
365
+ "eval_val_loss": 0.30577030777931213,
366
+ "eval_val_runtime": 33.8568,
367
+ "eval_val_samples_per_second": 25.106,
368
+ "eval_val_steps_per_second": 3.16,
369
+ "step": 256
370
+ },
371
+ {
372
+ "epoch": 0.82,
373
+ "eval_val_alice_acc_stderr": 0.012572317234488177,
374
+ "eval_val_alice_accuracy": 0.9260969976905312,
375
+ "eval_val_alice_loss": 0.21393465995788574,
376
+ "eval_val_alice_runtime": 17.1088,
377
+ "eval_val_alice_samples_per_second": 25.309,
378
+ "eval_val_alice_steps_per_second": 3.215,
379
+ "step": 256
380
+ },
381
+ {
382
+ "epoch": 0.82,
383
+ "eval_val_bob_acc_stderr": 0.017983215186550393,
384
+ "eval_val_bob_accuracy": 0.8393285371702638,
385
+ "eval_val_bob_loss": 0.40229618549346924,
386
+ "eval_val_bob_runtime": 17.1516,
387
+ "eval_val_bob_samples_per_second": 24.313,
388
+ "eval_val_bob_steps_per_second": 3.09,
389
+ "step": 256
390
+ },
391
+ {
392
+ "epoch": 0.82,
393
+ "eval_val_bob_gt_acc_stderr": 0.012256027700828325,
394
+ "eval_val_bob_gt_accuracy": 0.9328537170263789,
395
+ "eval_val_bob_gt_loss": 0.20910073816776276,
396
+ "eval_val_bob_gt_runtime": 17.1417,
397
+ "eval_val_bob_gt_samples_per_second": 24.327,
398
+ "eval_val_bob_gt_steps_per_second": 3.092,
399
+ "step": 256
400
+ },
401
+ {
402
+ "epoch": 0.96,
403
+ "learning_rate": 4.2613636363636365e-06,
404
+ "loss": 0.3062,
405
+ "step": 300
406
+ },
407
+ {
408
+ "epoch": 1.12,
409
+ "learning_rate": 4.9715909090909094e-06,
410
+ "loss": 0.2271,
411
+ "step": 350
412
+ },
413
+ {
414
+ "epoch": 1.28,
415
+ "learning_rate": 5.681818181818183e-06,
416
+ "loss": 0.2346,
417
+ "step": 400
418
+ },
419
+ {
420
+ "epoch": 1.44,
421
+ "learning_rate": 6.392045454545454e-06,
422
+ "loss": 0.2203,
423
+ "step": 450
424
+ },
425
+ {
426
+ "epoch": 1.6,
427
+ "learning_rate": 7.102272727272727e-06,
428
+ "loss": 0.1968,
429
+ "step": 500
430
+ },
431
+ {
432
+ "epoch": 1.64,
433
+ "eval_val_acc_stderr": 0.008648647548423583,
434
+ "eval_val_accuracy": 0.9317647058823529,
435
+ "eval_val_loss": 0.18704643845558167,
436
+ "eval_val_runtime": 33.6882,
437
+ "eval_val_samples_per_second": 25.231,
438
+ "eval_val_steps_per_second": 3.176,
439
+ "step": 512
440
+ },
441
+ {
442
+ "epoch": 1.64,
443
+ "eval_val_alice_acc_stderr": 0.010323486896101533,
444
+ "eval_val_alice_accuracy": 0.9515011547344111,
445
+ "eval_val_alice_loss": 0.12077159434556961,
446
+ "eval_val_alice_runtime": 17.0206,
447
+ "eval_val_alice_samples_per_second": 25.44,
448
+ "eval_val_alice_steps_per_second": 3.231,
449
+ "step": 512
450
+ },
451
+ {
452
+ "epoch": 1.64,
453
+ "eval_val_bob_acc_stderr": 0.014093125547753297,
454
+ "eval_val_bob_accuracy": 0.9088729016786571,
455
+ "eval_val_bob_loss": 0.25665926933288574,
456
+ "eval_val_bob_runtime": 17.0565,
457
+ "eval_val_bob_samples_per_second": 24.448,
458
+ "eval_val_bob_steps_per_second": 3.107,
459
+ "step": 512
460
+ },
461
+ {
462
+ "epoch": 1.64,
463
+ "eval_val_bob_gt_acc_stderr": 0.01604432860757207,
464
+ "eval_val_bob_gt_accuracy": 0.8776978417266187,
465
+ "eval_val_bob_gt_loss": 0.31840986013412476,
466
+ "eval_val_bob_gt_runtime": 17.0564,
467
+ "eval_val_bob_gt_samples_per_second": 24.448,
468
+ "eval_val_bob_gt_steps_per_second": 3.107,
469
+ "step": 512
470
+ },
471
+ {
472
+ "epoch": 1.76,
473
+ "learning_rate": 7.8125e-06,
474
+ "loss": 0.2178,
475
+ "step": 550
476
+ },
477
+ {
478
+ "epoch": 1.92,
479
+ "learning_rate": 8.522727272727273e-06,
480
+ "loss": 0.1919,
481
+ "step": 600
482
+ },
483
+ {
484
+ "epoch": 2.08,
485
+ "learning_rate": 9.232954545454546e-06,
486
+ "loss": 0.1539,
487
+ "step": 650
488
+ },
489
+ {
490
+ "epoch": 2.24,
491
+ "learning_rate": 9.943181818181819e-06,
492
+ "loss": 0.15,
493
+ "step": 700
494
+ },
495
+ {
496
+ "epoch": 2.4,
497
+ "learning_rate": 1.0653409090909092e-05,
498
+ "loss": 0.176,
499
+ "step": 750
500
+ },
501
+ {
502
+ "epoch": 2.55,
503
+ "learning_rate": 1.1363636363636366e-05,
504
+ "loss": 0.1293,
505
+ "step": 800
506
+ },
507
+ {
508
+ "epoch": 2.71,
509
+ "learning_rate": 1.2073863636363636e-05,
510
+ "loss": 0.1577,
511
+ "step": 850
512
+ },
513
+ {
514
+ "epoch": 2.87,
515
+ "learning_rate": 1.2784090909090909e-05,
516
+ "loss": 0.135,
517
+ "step": 900
518
+ },
519
+ {
520
+ "epoch": 3.03,
521
+ "learning_rate": 1.3494318181818182e-05,
522
+ "loss": 0.1246,
523
+ "step": 950
524
+ },
525
+ {
526
+ "epoch": 3.19,
527
+ "learning_rate": 1.4204545454545455e-05,
528
+ "loss": 0.0965,
529
+ "step": 1000
530
+ },
531
+ {
532
+ "epoch": 3.27,
533
+ "eval_val_acc_stderr": 0.006907725389665332,
534
+ "eval_val_accuracy": 0.9576470588235294,
535
+ "eval_val_loss": 0.14458392560482025,
536
+ "eval_val_runtime": 33.6709,
537
+ "eval_val_samples_per_second": 25.244,
538
+ "eval_val_steps_per_second": 3.178,
539
+ "step": 1024
540
+ },
541
+ {
542
+ "epoch": 3.27,
543
+ "eval_val_alice_acc_stderr": 0.009333387164702351,
544
+ "eval_val_alice_accuracy": 0.9607390300230947,
545
+ "eval_val_alice_loss": 0.129893496632576,
546
+ "eval_val_alice_runtime": 17.0239,
547
+ "eval_val_alice_samples_per_second": 25.435,
548
+ "eval_val_alice_steps_per_second": 3.231,
549
+ "step": 1024
550
+ },
551
+ {
552
+ "epoch": 3.27,
553
+ "eval_val_bob_acc_stderr": 0.010212081074718785,
554
+ "eval_val_bob_accuracy": 0.9544364508393285,
555
+ "eval_val_bob_loss": 0.16120219230651855,
556
+ "eval_val_bob_runtime": 17.0579,
557
+ "eval_val_bob_samples_per_second": 24.446,
558
+ "eval_val_bob_steps_per_second": 3.107,
559
+ "step": 1024
560
+ },
561
+ {
562
+ "epoch": 3.27,
563
+ "eval_val_bob_gt_acc_stderr": 0.016441676917357297,
564
+ "eval_val_bob_gt_accuracy": 0.8705035971223022,
565
+ "eval_val_bob_gt_loss": 0.5936062932014465,
566
+ "eval_val_bob_gt_runtime": 17.0652,
567
+ "eval_val_bob_gt_samples_per_second": 24.436,
568
+ "eval_val_bob_gt_steps_per_second": 3.106,
569
+ "step": 1024
570
+ },
571
+ {
572
+ "epoch": 3.35,
573
+ "learning_rate": 1.4914772727272729e-05,
574
+ "loss": 0.1054,
575
+ "step": 1050
576
+ },
577
+ {
578
+ "epoch": 3.51,
579
+ "learning_rate": 1.5625e-05,
580
+ "loss": 0.1164,
581
+ "step": 1100
582
+ },
583
+ {
584
+ "epoch": 3.67,
585
+ "learning_rate": 1.6335227272727275e-05,
586
+ "loss": 0.0701,
587
+ "step": 1150
588
+ },
589
+ {
590
+ "epoch": 3.83,
591
+ "learning_rate": 1.7045454545454546e-05,
592
+ "loss": 0.1118,
593
+ "step": 1200
594
+ },
595
+ {
596
+ "epoch": 3.99,
597
+ "learning_rate": 1.775568181818182e-05,
598
+ "loss": 0.088,
599
+ "step": 1250
600
+ },
601
+ {
602
+ "epoch": 4.15,
603
+ "learning_rate": 1.8465909090909092e-05,
604
+ "loss": 0.0578,
605
+ "step": 1300
606
+ },
607
+ {
608
+ "epoch": 4.31,
609
+ "learning_rate": 1.9176136363636366e-05,
610
+ "loss": 0.0737,
611
+ "step": 1350
612
+ },
613
+ {
614
+ "epoch": 4.47,
615
+ "learning_rate": 1.9886363636363638e-05,
616
+ "loss": 0.0777,
617
+ "step": 1400
618
+ },
619
+ {
620
+ "epoch": 4.63,
621
+ "learning_rate": 1.9894763217238787e-05,
622
+ "loss": 0.0562,
623
+ "step": 1450
624
+ },
625
+ {
626
+ "epoch": 4.79,
627
+ "learning_rate": 1.976948133299925e-05,
628
+ "loss": 0.0741,
629
+ "step": 1500
630
+ },
631
+ {
632
+ "epoch": 4.95,
633
+ "learning_rate": 1.964419944875971e-05,
634
+ "loss": 0.0504,
635
+ "step": 1550
636
+ },
637
+ {
638
+ "epoch": 5.11,
639
+ "learning_rate": 1.951891756452017e-05,
640
+ "loss": 0.0508,
641
+ "step": 1600
642
+ },
643
+ {
644
+ "epoch": 5.27,
645
+ "learning_rate": 1.9393635680280633e-05,
646
+ "loss": 0.0489,
647
+ "step": 1650
648
+ },
649
+ {
650
+ "epoch": 5.43,
651
+ "learning_rate": 1.9268353796041094e-05,
652
+ "loss": 0.0314,
653
+ "step": 1700
654
+ },
655
+ {
656
+ "epoch": 5.59,
657
+ "learning_rate": 1.9143071911801552e-05,
658
+ "loss": 0.041,
659
+ "step": 1750
660
+ },
661
+ {
662
+ "epoch": 5.75,
663
+ "learning_rate": 1.9017790027562014e-05,
664
+ "loss": 0.0348,
665
+ "step": 1800
666
+ },
667
+ {
668
+ "epoch": 5.91,
669
+ "learning_rate": 1.8892508143322475e-05,
670
+ "loss": 0.0404,
671
+ "step": 1850
672
+ },
673
+ {
674
+ "epoch": 6.07,
675
+ "learning_rate": 1.8767226259082937e-05,
676
+ "loss": 0.0406,
677
+ "step": 1900
678
+ },
679
+ {
680
+ "epoch": 6.23,
681
+ "learning_rate": 1.8641944374843398e-05,
682
+ "loss": 0.0287,
683
+ "step": 1950
684
+ },
685
+ {
686
+ "epoch": 6.39,
687
+ "learning_rate": 1.851666249060386e-05,
688
+ "loss": 0.0382,
689
+ "step": 2000
690
+ },
691
+ {
692
+ "epoch": 6.54,
693
+ "eval_val_acc_stderr": 0.004801960383990247,
694
+ "eval_val_accuracy": 0.98,
695
+ "eval_val_loss": 0.11676687747240067,
696
+ "eval_val_runtime": 33.5165,
697
+ "eval_val_samples_per_second": 25.361,
698
+ "eval_val_steps_per_second": 3.192,
699
+ "step": 2048
700
+ },
701
+ {
702
+ "epoch": 6.54,
703
+ "eval_val_alice_acc_stderr": 0.008200955905749383,
704
+ "eval_val_alice_accuracy": 0.9699769053117783,
705
+ "eval_val_alice_loss": 0.17065930366516113,
706
+ "eval_val_alice_runtime": 16.9426,
707
+ "eval_val_alice_samples_per_second": 25.557,
708
+ "eval_val_alice_steps_per_second": 3.246,
709
+ "step": 2048
710
+ },
711
+ {
712
+ "epoch": 6.54,
713
+ "eval_val_bob_acc_stderr": 0.004138631085700285,
714
+ "eval_val_bob_accuracy": 0.9928057553956835,
715
+ "eval_val_bob_loss": 0.06056825444102287,
716
+ "eval_val_bob_runtime": 16.9895,
717
+ "eval_val_bob_samples_per_second": 24.545,
718
+ "eval_val_bob_steps_per_second": 3.12,
719
+ "step": 2048
720
+ },
721
+ {
722
+ "epoch": 6.54,
723
+ "eval_val_bob_gt_acc_stderr": 0.01787398723923547,
724
+ "eval_val_bob_gt_accuracy": 0.841726618705036,
725
+ "eval_val_bob_gt_loss": 1.0665634870529175,
726
+ "eval_val_bob_gt_runtime": 16.987,
727
+ "eval_val_bob_gt_samples_per_second": 24.548,
728
+ "eval_val_bob_gt_steps_per_second": 3.12,
729
+ "step": 2048
730
+ }
731
+ ],
732
+ "logging_steps": 50,
733
+ "max_steps": 9390,
734
+ "num_input_tokens_seen": 0,
735
+ "num_train_epochs": 30,
736
+ "save_steps": 10000000000,
737
+ "total_flos": 7.4063386395648e+17,
738
+ "train_batch_size": 4,
739
+ "trial_name": null,
740
+ "trial_params": null
741
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c47b130a69a19aa8611f6762a8367bca2cbb476e4e84397ae588338b458f987
3
+ size 4728