elderberry17
commited on
Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +1 -1
- README.md +4 -4
1_Pooling/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"word_embedding_dimension":
|
3 |
"pooling_mode_cls_token": true,
|
4 |
"pooling_mode_mean_tokens": false,
|
5 |
"pooling_mode_max_tokens": false,
|
|
|
1 |
{
|
2 |
+
"word_embedding_dimension": 312,
|
3 |
"pooling_mode_cls_token": true,
|
4 |
"pooling_mode_mean_tokens": false,
|
5 |
"pooling_mode_max_tokens": false,
|
README.md
CHANGED
@@ -10,7 +10,7 @@ library_name: sentence-transformers
|
|
10 |
|
11 |
# SentenceTransformer based on cointegrated/rubert-tiny
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny). It maps sentences & paragraphs to a
|
14 |
|
15 |
## Model Details
|
16 |
|
@@ -18,7 +18,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [c
|
|
18 |
- **Model Type:** Sentence Transformer
|
19 |
- **Base model:** [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) <!-- at revision 5441c5ea8026d4f6d7505ec004845409f1259fb1 -->
|
20 |
- **Maximum Sequence Length:** 256 tokens
|
21 |
-
- **Output Dimensionality:**
|
22 |
- **Similarity Function:** Cosine Similarity
|
23 |
<!-- - **Training Dataset:** Unknown -->
|
24 |
<!-- - **Language:** Unknown -->
|
@@ -35,7 +35,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [c
|
|
35 |
```
|
36 |
SentenceTransformer(
|
37 |
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
38 |
-
(1): Pooling({'word_embedding_dimension':
|
39 |
)
|
40 |
```
|
41 |
|
@@ -63,7 +63,7 @@ sentences = [
|
|
63 |
]
|
64 |
embeddings = model.encode(sentences)
|
65 |
print(embeddings.shape)
|
66 |
-
# [3,
|
67 |
|
68 |
# Get the similarity scores for the embeddings
|
69 |
similarities = model.similarity(embeddings, embeddings)
|
|
|
10 |
|
11 |
# SentenceTransformer based on cointegrated/rubert-tiny
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
14 |
|
15 |
## Model Details
|
16 |
|
|
|
18 |
- **Model Type:** Sentence Transformer
|
19 |
- **Base model:** [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) <!-- at revision 5441c5ea8026d4f6d7505ec004845409f1259fb1 -->
|
20 |
- **Maximum Sequence Length:** 256 tokens
|
21 |
+
- **Output Dimensionality:** 312 tokens
|
22 |
- **Similarity Function:** Cosine Similarity
|
23 |
<!-- - **Training Dataset:** Unknown -->
|
24 |
<!-- - **Language:** Unknown -->
|
|
|
35 |
```
|
36 |
SentenceTransformer(
|
37 |
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
38 |
+
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
39 |
)
|
40 |
```
|
41 |
|
|
|
63 |
]
|
64 |
embeddings = model.encode(sentences)
|
65 |
print(embeddings.shape)
|
66 |
+
# [3, 312]
|
67 |
|
68 |
# Get the similarity scores for the embeddings
|
69 |
similarities = model.similarity(embeddings, embeddings)
|