File size: 2,907 Bytes
d2406ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: qarib/bert-base-qarib60_860k
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Qarib_arabic_keyword_extraction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Qarib_arabic_keyword_extraction
This model is a fine-tuned version of [qarib/bert-base-qarib60_860k](https://huggingface.co/qarib/bert-base-qarib60_860k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4027
- Precision: 0.5369
- Recall: 0.5937
- F1: 0.5638
- Accuracy: 0.9408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2196 | 1.0 | 750 | 0.1674 | 0.4656 | 0.4190 | 0.4411 | 0.9327 |
| 0.1374 | 2.0 | 1500 | 0.1559 | 0.4741 | 0.5255 | 0.4985 | 0.9366 |
| 0.0976 | 3.0 | 2250 | 0.1711 | 0.4901 | 0.5650 | 0.5249 | 0.9378 |
| 0.0676 | 4.0 | 3000 | 0.1928 | 0.4884 | 0.5557 | 0.5199 | 0.9363 |
| 0.0474 | 5.0 | 3750 | 0.2109 | 0.5313 | 0.5438 | 0.5375 | 0.9402 |
| 0.0342 | 6.0 | 4500 | 0.2414 | 0.5259 | 0.5754 | 0.5495 | 0.9389 |
| 0.024 | 7.0 | 5250 | 0.2527 | 0.5076 | 0.5881 | 0.5449 | 0.9382 |
| 0.0186 | 8.0 | 6000 | 0.3029 | 0.5379 | 0.5654 | 0.5513 | 0.9400 |
| 0.0143 | 9.0 | 6750 | 0.3154 | 0.5307 | 0.5862 | 0.5571 | 0.9398 |
| 0.0108 | 10.0 | 7500 | 0.3490 | 0.5491 | 0.5810 | 0.5646 | 0.9403 |
| 0.0078 | 11.0 | 8250 | 0.3550 | 0.5475 | 0.5929 | 0.5693 | 0.9412 |
| 0.0068 | 12.0 | 9000 | 0.3681 | 0.5360 | 0.6019 | 0.5670 | 0.9406 |
| 0.0049 | 13.0 | 9750 | 0.3873 | 0.5264 | 0.6048 | 0.5629 | 0.9402 |
| 0.004 | 14.0 | 10500 | 0.3987 | 0.5380 | 0.5937 | 0.5644 | 0.9407 |
| 0.0034 | 15.0 | 11250 | 0.4027 | 0.5369 | 0.5937 | 0.5638 | 0.9408 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|