emre commited on
Commit
8b5595e
·
1 Parent(s): 274e995

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xlsr-53-W2V2-TATAR-SMALL
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4714
20
+ - Wer: 0.5316
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 30
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
55
+ | 6.2446 | 1.17 | 400 | 3.2621 | 1.0 |
56
+ | 1.739 | 2.35 | 800 | 0.5832 | 0.7688 |
57
+ | 0.4718 | 3.52 | 1200 | 0.4785 | 0.6824 |
58
+ | 0.3574 | 4.69 | 1600 | 0.4814 | 0.6792 |
59
+ | 0.2946 | 5.86 | 2000 | 0.4484 | 0.6506 |
60
+ | 0.2674 | 7.04 | 2400 | 0.4612 | 0.6225 |
61
+ | 0.2349 | 8.21 | 2800 | 0.4600 | 0.6050 |
62
+ | 0.2206 | 9.38 | 3200 | 0.4772 | 0.6048 |
63
+ | 0.2072 | 10.56 | 3600 | 0.4676 | 0.6106 |
64
+ | 0.1984 | 11.73 | 4000 | 0.4816 | 0.6079 |
65
+ | 0.1793 | 12.9 | 4400 | 0.4616 | 0.5836 |
66
+ | 0.172 | 14.08 | 4800 | 0.4808 | 0.5860 |
67
+ | 0.1624 | 15.25 | 5200 | 0.4854 | 0.5820 |
68
+ | 0.156 | 16.42 | 5600 | 0.4609 | 0.5656 |
69
+ | 0.1448 | 17.59 | 6000 | 0.4926 | 0.5817 |
70
+ | 0.1406 | 18.77 | 6400 | 0.4638 | 0.5654 |
71
+ | 0.1337 | 19.94 | 6800 | 0.4731 | 0.5652 |
72
+ | 0.1317 | 21.11 | 7200 | 0.4861 | 0.5639 |
73
+ | 0.1179 | 22.29 | 7600 | 0.4766 | 0.5521 |
74
+ | 0.1197 | 23.46 | 8000 | 0.4824 | 0.5584 |
75
+ | 0.1096 | 24.63 | 8400 | 0.5006 | 0.5559 |
76
+ | 0.1038 | 25.81 | 8800 | 0.4994 | 0.5440 |
77
+ | 0.0992 | 26.98 | 9200 | 0.4867 | 0.5405 |
78
+ | 0.0984 | 28.15 | 9600 | 0.4798 | 0.5361 |
79
+ | 0.0943 | 29.33 | 10000 | 0.4714 | 0.5316 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.11.3
85
+ - Pytorch 1.10.0+cu111
86
+ - Datasets 1.14.0
87
+ - Tokenizers 0.10.3