emre commited on
Commit
f4c2997
·
1 Parent(s): 16945d8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xlsr-53-W2V2-TR-MED
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xlsr-53-W2V2-TR-MED
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4467
20
+ - Wer: 0.4598
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 60
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 5.1343 | 4.21 | 400 | 2.3674 | 1.0372 |
56
+ | 0.8075 | 8.42 | 800 | 0.4583 | 0.6308 |
57
+ | 0.3209 | 12.63 | 1200 | 0.4291 | 0.5531 |
58
+ | 0.2273 | 16.84 | 1600 | 0.4348 | 0.5378 |
59
+ | 0.1764 | 21.05 | 2000 | 0.4550 | 0.5326 |
60
+ | 0.148 | 25.26 | 2400 | 0.4839 | 0.5319 |
61
+ | 0.1268 | 29.47 | 2800 | 0.4515 | 0.5070 |
62
+ | 0.1113 | 33.68 | 3200 | 0.4590 | 0.4930 |
63
+ | 0.1025 | 37.89 | 3600 | 0.4546 | 0.4888 |
64
+ | 0.0922 | 42.11 | 4000 | 0.4782 | 0.4852 |
65
+ | 0.082 | 46.32 | 4400 | 0.4605 | 0.4752 |
66
+ | 0.0751 | 50.53 | 4800 | 0.4358 | 0.4689 |
67
+ | 0.0699 | 54.74 | 5200 | 0.4359 | 0.4629 |
68
+ | 0.0633 | 58.95 | 5600 | 0.4467 | 0.4598 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.11.3
74
+ - Pytorch 1.10.0+cu111
75
+ - Datasets 1.14.0
76
+ - Tokenizers 0.10.3