enoriega commited on
Commit
318b165
·
1 Parent(s): 03c5c75

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: rule_learning_margin_1mm_spanpred_nospec
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # rule_learning_margin_1mm_spanpred_nospec
13
+
14
+ This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.3967
17
+ - Margin Accuracy: 0.8139
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 5e-05
37
+ - train_batch_size: 4
38
+ - eval_batch_size: 4
39
+ - seed: 42
40
+ - gradient_accumulation_steps: 2000
41
+ - total_train_batch_size: 8000
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 3.0
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy |
50
+ |:-------------:|:-----:|:----:|:---------------:|:---------------:|
51
+ | 0.5864 | 0.16 | 20 | 0.5454 | 0.7564 |
52
+ | 0.4995 | 0.32 | 40 | 0.4761 | 0.7867 |
53
+ | 0.4866 | 0.48 | 60 | 0.4353 | 0.8057 |
54
+ | 0.4568 | 0.64 | 80 | 0.4229 | 0.8098 |
55
+ | 0.4409 | 0.8 | 100 | 0.4136 | 0.8140 |
56
+ | 0.4369 | 0.96 | 120 | 0.4124 | 0.8118 |
57
+ | 0.4172 | 1.12 | 140 | 0.4043 | 0.8118 |
58
+ | 0.4208 | 1.28 | 160 | 0.4072 | 0.8119 |
59
+ | 0.4256 | 1.44 | 180 | 0.4041 | 0.8124 |
60
+ | 0.4201 | 1.6 | 200 | 0.4041 | 0.8127 |
61
+ | 0.4159 | 1.76 | 220 | 0.4006 | 0.8125 |
62
+ | 0.4103 | 1.92 | 240 | 0.4004 | 0.8131 |
63
+ | 0.4282 | 2.08 | 260 | 0.3999 | 0.8138 |
64
+ | 0.4169 | 2.24 | 280 | 0.4006 | 0.8136 |
65
+ | 0.4263 | 2.4 | 300 | 0.3962 | 0.8133 |
66
+ | 0.4252 | 2.56 | 320 | 0.3994 | 0.8137 |
67
+ | 0.4202 | 2.72 | 340 | 0.3965 | 0.8137 |
68
+ | 0.4146 | 2.88 | 360 | 0.3967 | 0.8139 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.19.2
74
+ - Pytorch 1.11.0
75
+ - Datasets 2.2.1
76
+ - Tokenizers 0.12.1