eslamxm commited on
Commit
f99f99a
·
1 Parent(s): 9d3eb17

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -16,11 +16,13 @@ model-index:
16
  dataset:
17
  name: food101
18
  type: food101
 
 
19
  args: default
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
- value: 0.8558811881188119
24
  ---
25
 
26
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
32
  It achieves the following results on the evaluation set:
33
- - Loss: 0.5434
34
- - Accuracy: 0.8559
35
 
36
  ## Model description
37
 
@@ -63,15 +65,15 @@ The following hyperparameters were used during training:
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
66
- | 1.6283 | 1.0 | 4735 | 0.9875 | 0.7409 |
67
- | 0.9874 | 2.0 | 9470 | 0.7967 | 0.7894 |
68
- | 0.7102 | 3.0 | 14205 | 0.6455 | 0.8255 |
69
- | 0.4917 | 4.0 | 18940 | 0.5502 | 0.8524 |
70
 
71
 
72
  ### Framework versions
73
 
74
- - Transformers 4.19.2
75
- - Pytorch 1.11.0+cu113
76
- - Datasets 2.2.1
77
  - Tokenizers 0.12.1
 
16
  dataset:
17
  name: food101
18
  type: food101
19
+ config: default
20
+ split: train
21
  args: default
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8539405940594059
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.5493
36
+ - Accuracy: 0.8539
37
 
38
  ## Model description
39
 
 
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
68
+ | 1.657 | 1.0 | 4735 | 0.9732 | 0.7459 |
69
+ | 0.9869 | 2.0 | 9470 | 0.7987 | 0.7884 |
70
+ | 0.71 | 3.0 | 14205 | 0.6364 | 0.8311 |
71
+ | 0.4961 | 4.0 | 18940 | 0.5595 | 0.8487 |
72
 
73
 
74
  ### Framework versions
75
 
76
+ - Transformers 4.21.1
77
+ - Pytorch 1.12.0+cu113
78
+ - Datasets 2.4.0
79
  - Tokenizers 0.12.1