File size: 8,544 Bytes
3666434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- slue-voxceleb
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/sluevoxceleb_owsm_finetune_sa`
This model was trained by “siddhu001” using slue-voxceleb recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
```bash
cd espnet
git checkout e23ef85f0b3116ad5c60d0833f186da0deec0734
pip install -e .
cd egs2/slue-voxceleb/slu1_superb_correct
./run.sh --skip_data_prep false --skip_train true --download_model espnet/sluevoxceleb_owsm_finetune_sa
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Wed Feb 7 23:48:24 CST 2024`
- python version: `3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0]`
- espnet version: `espnet 202310`
- pytorch version: `pytorch 2.1.0+cu121`
- Git hash: `21d2105784e4da98397bf487b2550d4c6e16d40d`
- Commit date: `Wed Jan 31 13:40:37 2024 -0600`
## exp/slu_train_asr_own3.1_weighted_finetune_0.000001_raw_en_word_sp
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_slu_model_valid.loss.ave/devel|1436|1436|79.5|20.5|0.0|0.0|20.5|20.5|
|decode_asr_slu_model_valid.loss.ave/test|3426|3426|79.3|20.7|0.0|0.0|20.7|20.7|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_slu_model_valid.loss.ave/devel|1436|10365|81.9|16.1|2.0|0.8|18.9|20.5|
|decode_asr_slu_model_valid.loss.ave/test|3426|24887|82.1|15.8|2.2|0.6|18.6|20.7|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## exp/slu_train_asr_own3.1_weighted_finetune_0.000001_raw_en_word_sp/decode_asr_slu_model_valid.loss.ave
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|org/devel|1437|1437|79.5|20.5|0.0|0.0|20.5|20.5|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|org/devel|1437|10372|81.9|16.1|2.0|0.8|18.9|20.5|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## ASR config
<details><summary>expand</summary>
```
config: conf/train_asr_own3.1_weighted_finetune_0.000001.yaml
print_config: false
log_level: INFO
drop_last_iter: false
dry_run: false
iterator_type: sequence
valid_iterator_type: null
output_dir: exp/slu_train_asr_own3.1_weighted_finetune_0.000001_raw_en_word_sp
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 42653
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 50
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 2
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
use_lora: false
save_lora_only: true
lora_conf: {}
pretrain_path: null
init_param:
- /scratch/bbjs/arora1/new_download_espnet_egs2/harpervalley/slu1_superb_onlyda/owsm_v3.1_ebf/exp/s2t_train_s2t_ebf_conv2d_size1024_e18_d18_piecewise_lr2e-4_warmup60k_flashattn_raw_bpe50000/valid.total_count.ave_5best.till45epoch.pth:encoder:encoder
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 64
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/slu_stats_raw_en_word_sp/train/speech_shape
- exp/slu_stats_raw_en_word_sp/train/text_shape.word
valid_shape_file:
- exp/slu_stats_raw_en_word_sp/valid/speech_shape
- exp/slu_stats_raw_en_word_sp/valid/text_shape.word
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
chunk_default_fs: null
train_data_path_and_name_and_type:
- - dump/raw/train_sp/wav.scp
- speech
- sound
- - dump/raw/train_sp/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/devel/wav.scp
- speech
- sound
- - dump/raw/devel/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
allow_multi_rates: false
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 1000
token_list:
- <blank>
- <unk>
- Neutral
- Positive
- Negative
- <sos/eos>
transcript_token_list: null
two_pass: false
pre_postencoder_norm: false
init: null
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: null
zero_infinity: true
brctc_risk_strategy: exp
brctc_group_strategy: end
brctc_risk_factor: 0.0
joint_net_conf: null
use_preprocessor: true
token_type: word
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
frontend: default
frontend_conf:
n_fft: 512
win_length: 400
hop_length: 160
fs: 16k
specaug: specaug
specaug_conf:
apply_time_warp: false
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 27
num_freq_mask: 2
apply_time_mask: true
time_mask_width_ratio_range:
- 0.0
- 0.05
num_time_mask: 10
normalize: global_mvn
normalize_conf:
stats_file: /scratch/bbjs/arora1/new_download_espnet_egs2/harpervalley/slu1_superb_onlyda/owsm_v3.1_ebf/exp/s2t_stats_raw_bpe50000/train/feats_stats.npz
model: espnet
model_conf:
ctc_weight: 0.0
lsm_weight: 0.1
length_normalized_loss: false
superb_setup_encoder: true
num_class: 3
ssl_input_size: 1024
weighted_sum: true
extract_feats_in_collect_stats: false
preencoder: null
preencoder_conf: {}
encoder: e_branchformer
encoder_conf:
output_size: 1024
attention_heads: 16
attention_layer_type: selfattn
pos_enc_layer_type: abs_pos
rel_pos_type: latest
cgmlp_linear_units: 4096
cgmlp_conv_kernel: 31
use_linear_after_conv: false
gate_activation: identity
num_blocks: 18
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d
layer_drop_rate: 0.0
linear_units: 4096
positionwise_layer_type: linear
use_ffn: true
macaron_ffn: true
merge_conv_kernel: 31
prepostencoder: null
prepostencoder_conf: {}
postencoder: null
postencoder_conf: {}
deliberationencoder: null
deliberationencoder_conf: {}
decoder: rnn
decoder_conf: {}
postdecoder: null
postdecoder_conf: {}
required:
- output_dir
- token_list
version: '202310'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|