Fizzarolli commited on
Commit
d748502
·
verified ·
1 Parent(s): dcdf623

Add files using upload-large-folder tool

Browse files
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ library_name: transformers
4
+ language:
5
+ - en
6
+ - fr
7
+ - de
8
+ - es
9
+ - it
10
+ - pt
11
+ - ja
12
+ - ko
13
+ - zh
14
+ - ar
15
+ - el
16
+ - fa
17
+ - pl
18
+ - id
19
+ - cs
20
+ - he
21
+ - hi
22
+ - nl
23
+ - ro
24
+ - ru
25
+ - tr
26
+ - uk
27
+ - vi
28
+ license: cc-by-nc-4.0
29
+ extra_gated_prompt: "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time."
30
+ extra_gated_fields:
31
+ Name: text
32
+ Affiliation: text
33
+ Country: country
34
+ I agree to use this model for non-commercial use ONLY: checkbox
35
+ ---
36
+
37
+ # **Model Card for C4AI Command R7B**
38
+
39
+ ## **Model Summary**
40
+
41
+ C4AI Command R7B is an open weights research release of a 7B billion parameter model with advanced capabilities optimized for a variety of use cases including reasoning, summarization, question answering, and code. The model is trained to perform sophisticated tasks including Retrieval Augmented Generation (RAG) and tool use. The model also has powerful agentic capabilities with the ability to use and combine multiple tools over multiple steps to accomplish more difficult tasks. It obtains top performance on enterprise relevant code use cases. C4AI Command R7B is a multilingual model trained on 23 languages.
42
+
43
+ Developed by: [Cohere](https://cohere.com/) and [Cohere For AI](https://cohere.for.ai/)
44
+
45
+ * Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
46
+ * License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
47
+ * Model: c4ai-command-r7b-12-2024
48
+ * Model Size: 7 billion parameters
49
+ * Context length: 128K
50
+
51
+
52
+ **Try C4AI Command R7B**
53
+
54
+ You can try out C4AI Command R7B before downloading the weights in our hosted [Hugging Face Space](https://cohereforai-c4ai-command.hf.space/models/command-r7b-12-2024).
55
+
56
+
57
+ **Usage**
58
+
59
+ Please install transformers from the source repository that includes the necessary changes for this model.
60
+
61
+ ```py
62
+ # pip install 'git+https://github.com/huggingface/transformers.git'
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
+
65
+ model_id = "CohereForAI/c4ai-command-r7b-12-2024"
66
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
67
+ model = AutoModelForCausalLM.from_pretrained(model_id)
68
+
69
+ # Format message with the c4ai-command-r7b-12-2024 chat template
70
+ messages = [{"role": "user", "content": "Hello, how are you?"}]
71
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
72
+
73
+ gen_tokens = model.generate(
74
+ input_ids,
75
+ max_new_tokens=100,
76
+ do_sample=True,
77
+ temperature=0.3,
78
+ )
79
+
80
+ gen_text = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
81
+ print(gen_text)
82
+ ```
83
+
84
+ ## **Model Details**
85
+
86
+ **Input**: Models input text only.
87
+
88
+ **Output**: Models generate text only.
89
+
90
+ **Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. The model features three layers with **sliding window attention** (window size 4096\) and **ROPE** for efficient local context modeling and relative positional encoding. A fourth layer uses **global attention** without positional embeddings, enabling unrestricted token interactions across the entire sequence.
91
+
92
+ **Languages covered**: The model has been trained on 23 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Chinese, Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, and Persian.
93
+
94
+ Context length: Command R7B supports a context length of 128K.
95
+
96
+ ### A well-rounded model
97
+
98
+ Command R7B excels on standardized and externally verifiable benchmarks such as the [HuggingFace Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/). Compared to other similarly sized open-weights models, Command R7B ranks first with strong performance across all tasks.
99
+
100
+ | | Command R7B | Gemma 2 IT 9B | Ministral 8B | Llama 3.1 8B |
101
+ | :---- | :---- | :---- | :---- | :---- |
102
+ | Average | **31.4** | 28.9 | 22 | 28.2 |
103
+ | IFEval | 77.9 | 74.4 | 58.96 | **78.6** |
104
+ | BBH | 36.1 | **42.1** | 25.82 | 29.9 |
105
+ | MATH hard | **26.4** | 0.2 | 6.5 | 19.3 |
106
+ | GPQA | 7.7 | **14.8** | 4.5 | 2.4 |
107
+ | MUSR | **11.6** | 9.74 | 10.7 | 8.41 |
108
+ | MMLU-Pro | 28.5 | **32** | 25.5 | 30.7 |
109
+
110
+ *HuggingFace Leaderboard evaluation results. Competitor numbers are taken from the official leaderboard. Command R7B results are calculated by us using the official HuggingFace prompts and evaluation code.*
111
+
112
+
113
+ ### **Chat Capabilities:**
114
+
115
+ Command R7B can be configured as both a conversational model and an instruct model. The [conversational mode](https://docs.cohere.com/docs/command-r7b-hf) conditions the model on interactive behaviour, meaning it is expected to reply in a conversational fashion, provides introductory statements and follow-up questions, and uses Markdown as well as LaTeX where appropriate. It is optimized for interactive experiences, such as chatbots, where the model engages in dialogue.
116
+
117
+ The [instruct mode](https://docs.cohere.com/docs/command-r7b-hf), in contrast, conditions the model to provide concise yet comprehensive responses, and does not use Markdown / LaTeX by default. It is designed for non-interactive, task-focused use cases like extracting information, summarizing text, translation, and categorization.
118
+
119
+ **Note:** by default, Command R7B is delivered without a system preamble. We recommend to add the conversational or instruct preambles as [described in our docs](https://docs.cohere.com/docs/command-r7b-hf).
120
+
121
+
122
+ ### **RAG Capabilities:**
123
+
124
+ Command R7B has been trained specifically for tasks like the final step of Retrieval Augmented Generation (RAG).
125
+
126
+ RAG with Command R7B is supported through [chat templates](https://huggingface.co/docs/transformers/main/en/chat_templating#advanced-retrieval-augmented-generation) in Transformers. The model takes a conversation as input (with an optional user-supplied system preamble), along with a list of document snippets.
127
+
128
+
129
+ <details>
130
+ <summary><b>RAG Example [CLICK TO EXPAND]</b></summary>
131
+
132
+ ```py
133
+ # Define conversation input
134
+ conversation = [{"role": "user", "content": "What has Man always dreamed of?"}]
135
+
136
+ # Define documents for retrieval-based generation
137
+ documents = [
138
+ {"heading": "The Moon: Our Age-Old Foe", "body": "Man has always dreamed of destroying the moon. In this essay, I shall..."},
139
+ {"heading": "Love is all you need", "body": "Man's dream has always been to find love. This profound lesson..."}
140
+ ]
141
+
142
+ # Get the RAG prompt
143
+ input_prompt = tokenizer.apply_chat_template(conversation=conversation, documents=documents, tokenize=False, add_generation_prompt=True, return_tensors="pt")
144
+ # Tokenize the prompt
145
+ input_ids = tokenizer.encode_plus(input_prompt, return_tensors="pt")
146
+ ```
147
+
148
+ You can then generate text from this input as normal.
149
+
150
+ Document snippets should be short chunks, rather than long documents, typically around 100-400 words per chunk, formatted as key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured.
151
+
152
+ You may find that simply including relevant documents directly in a user message works just as well, or better than using the documents parameter to render the special RAG template. The RAG template is generally a strong default. We encourage users to play with both, and to evaluate which mode works best for their specific use case.
153
+ </details>
154
+
155
+ Note that this was a very brief introduction to RAG \- for more information, see the Command R7B [prompt format docs](https://docs.cohere.com/docs/command-r7b-hf) and the Transformers [RAG documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-retrieval-augmented-generation).
156
+
157
+ ### **Tool Use Capabilities:**
158
+ Command R7B has been specifically trained with conversational tool use capabilities. This allows the model to interact with external tools like APIs, databases, or search engines.
159
+ Instructions on how to leverage these capabilities in Hugging Face are coming soon.
160
+ <!--
161
+ Command R7B has been specifically trained with conversational tool use capabilities. This allows the model to interact with external tools like APIs, databases, or search engines.
162
+
163
+ Tool use with Command R7B is supported through [chat templates](https://huggingface.co/docs/transformers/main/en/chat_templating#advanced-tool-use--function-calling) in Transformers. We recommend providing tool descriptions using JSON schema.
164
+
165
+ <details>
166
+ <summary><b>Tool Use Example [CLICK TO EXPAND]</b></summary>
167
+
168
+ ```py
169
+ tools = [
170
+ {
171
+ "type": "function",
172
+ "function": {
173
+ "name": "query_daily_sales_report",
174
+ "description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.",
175
+ "parameters": {
176
+ "type": "object",
177
+ "properties": {
178
+ "day": {
179
+ "description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.",
180
+ "type": "string",
181
+ }
182
+ },
183
+ "required": ["day"]
184
+ },
185
+ }
186
+ }
187
+ ]
188
+
189
+ # Define conversation input
190
+ conversation = [{"role": "user", "content": "Can you provide a sales summary for 29th September 2023?"}]
191
+
192
+ # Get the Tool Use prompt
193
+ input_prompt = tokenizer.apply_chat_template(conversation=conversation, tools=tools, tokenize=False, add_generation_prompt=True, return_tensors="pt")
194
+
195
+ # Tokenize the prompt
196
+ input_ids = tokenizer.encode_plus(input_prompt, return_tensors="pt")
197
+ ```
198
+
199
+ You can then generate text from this input as normal.
200
+
201
+ If the model generates a plan and tool calls, you should add them to the chat history like so:
202
+
203
+ ```py
204
+ tool_call = {"name": "query_daily_sales_report", "arguments": {"day": "2023-09-29"}}
205
+ tool_plan = "I will use the query_daily_sales_report tool to find the sales summary for 29th September 2023. I will then use the query_product_catalog tool to find the details about the products in the 'Electronics' category."
206
+ conversation.append({"role": "assistant", "tool_calls": [{ "id": "0", "type": "function", "function": tool_call},], "tool_plan": tool_plan})
207
+ ```
208
+
209
+ and then call the tool and append the result, with the tool role, like so:
210
+
211
+ ```py
212
+ api_response_for_query_daily_sales_report = SOME JSON RESPONSE
213
+ # Append tool results from tool call 0
214
+ conversation.append({"role": "tool", "tool_call_id": "0", "content": json.dumps(api_response_for_query_daily_sales_report)})
215
+ ```
216
+
217
+ After that, you can generate() again to let the model use the tool result in the chat.
218
+ </details>
219
+
220
+ Note that this was a very brief introduction to tool calling \- for more information, see the Command R7B [prompt format docs](https://docs.cohere.com/docs/command-r7b-hf) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
221
+ -->
222
+
223
+ ### **Code Capabilities:**
224
+
225
+ Command R7B has meaningfully improved on code capabilities. In addition to academic code benchmarks, we have evaluated it on enterprise-relevant scenarios, including SQL and code translation, where it outperforms other models of similar size. Try these out by requesting code snippets, code explanations, or code rewrites. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions.
226
+
227
+ ## **Model Card Contact**
228
+
229
+ For errors or additional questions about details in this model card, contact [email protected].
230
+
231
+ ## **Terms of Use:**
232
+
233
+ We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 7 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).
234
+
235
+ ## **Try Chat:**
236
+
237
+ You can try Command R7B chat in the playground [here](https://dashboard.cohere.com/playground/chat). You can also use it in our dedicated Hugging Face Space [here](https://cohereforai-c4ai-command.hf.space/models/command-r7b-12-2024).
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/alejandro_cohere_com/hf_models/cmd3/rc1/HF/hugging_face",
3
+ "architectures": [
4
+ "Cohere2ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 5,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": 255001,
11
+ "head_dim": 128,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 14336,
16
+ "layer_norm_eps": 1e-05,
17
+ "layer_switch": 4,
18
+ "logit_scale": 0.25,
19
+ "max_position_embeddings": 8192,
20
+ "model_type": "cohere2",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "order_of_interleaved_layers": "local_attn_first",
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "rope_gptj",
27
+ "rope_scaling": null,
28
+ "rope_theta": 50000,
29
+ "rotary_pct": 1.0,
30
+ "sliding_window": 4096,
31
+ "sliding_window_pattern": 4,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.48.0.dev0",
34
+ "use_cache": true,
35
+ "use_embedding_sharing": true,
36
+ "use_gated_activation": true,
37
+ "use_parallel_block": true,
38
+ "use_parallel_embedding": true,
39
+ "vocab_size": 256000
40
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 5,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 255001,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.48.0.dev0"
8
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3e0547fbfcb0e010c9640a99e509c05a700302c09278e6e3513cf214d56a953
3
+ size 4915779696
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b7ae637b33bf833c2b22a3382f7b671c7754c19bead0d2f3f84d2977b834447
3
+ size 4915824704
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0a437c9e2ca587ffd732f0a442c6c442cca6a4ebd58c3c781d33213204e6d4b
3
+ size 4999719592
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ba7a9c927fffdbeae21a534706fc3a817daf09a76102da0f434b1a8c73515bf
3
+ size 1224771944
model.safetensors.index.json ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16056066048
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
24
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
25
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
80
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
88
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
89
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
104
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
105
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
106
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
107
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
108
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
109
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
110
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
111
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
184
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
185
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
186
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
187
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
192
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
193
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
196
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
200
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
201
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
202
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
203
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
204
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
205
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
206
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
207
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
208
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
209
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
210
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
211
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
212
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
213
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
214
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
215
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
232
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
234
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
235
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
245
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
248
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
263
+ "model.norm.weight": "model-00004-of-00004.safetensors"
264
+ }
265
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<BOS_TOKEN>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|END_OF_TURN_TOKEN|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<PAD>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<UNK>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:953b2730d23ca19e7dca96f75f3e10b497bb679290b06d8981190bff2039fc72
3
+ size 20124922
tokenizer_config.json ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<PAD>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<UNK>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<CLS>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<SEP>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "4": {
39
+ "content": "<MASK_TOKEN>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "5": {
47
+ "content": "<BOS_TOKEN>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "6": {
55
+ "content": "<EOS_TOKEN>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "7": {
63
+ "content": "<EOP_TOKEN>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "255000": {
71
+ "content": "<|START_OF_TURN_TOKEN|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "255001": {
79
+ "content": "<|END_OF_TURN_TOKEN|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "255002": {
87
+ "content": "<|YES_TOKEN|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "255003": {
95
+ "content": "<|NO_TOKEN|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "255004": {
103
+ "content": "<|GOOD_TOKEN|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "255005": {
111
+ "content": "<|BAD_TOKEN|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "255006": {
119
+ "content": "<|USER_TOKEN|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "255007": {
127
+ "content": "<|CHATBOT_TOKEN|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "255008": {
135
+ "content": "<|SYSTEM_TOKEN|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "255009": {
143
+ "content": "<|USER_0_TOKEN|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "255010": {
151
+ "content": "<|USER_1_TOKEN|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "255011": {
159
+ "content": "<|USER_2_TOKEN|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "255012": {
167
+ "content": "<|USER_3_TOKEN|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "255013": {
175
+ "content": "<|USER_4_TOKEN|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "255014": {
183
+ "content": "<|USER_5_TOKEN|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "255015": {
191
+ "content": "<|USER_6_TOKEN|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "255016": {
199
+ "content": "<|USER_7_TOKEN|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "255017": {
207
+ "content": "<|USER_8_TOKEN|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "255018": {
215
+ "content": "<|USER_9_TOKEN|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "255019": {
223
+ "content": "<|START_THINKING|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": false
229
+ },
230
+ "255020": {
231
+ "content": "<|END_THINKING|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": false
237
+ },
238
+ "255021": {
239
+ "content": "<|START_RESPONSE|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "255022": {
247
+ "content": "<|END_RESPONSE|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "255023": {
255
+ "content": "<|START_ACTION|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": false
261
+ },
262
+ "255024": {
263
+ "content": "<|END_ACTION|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": false
269
+ },
270
+ "255025": {
271
+ "content": "<|START_TOOL_RESULT|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": false
277
+ },
278
+ "255026": {
279
+ "content": "<|END_TOOL_RESULT|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": false
285
+ },
286
+ "255027": {
287
+ "content": "<|EXTRA_8_TOKEN|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": false
293
+ },
294
+ "255028": {
295
+ "content": "<|NEW_FILE|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "255029": {
303
+ "content": "<|BEGINNING_OF_PREFIX_FIM_TOKEN|>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": false,
307
+ "single_word": false,
308
+ "special": false
309
+ },
310
+ "255030": {
311
+ "content": "<|BEGINNING_OF_MIDDLE_FIM_TOKEN|>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": false,
315
+ "single_word": false,
316
+ "special": false
317
+ },
318
+ "255031": {
319
+ "content": "<|BEGINNING_OF_SUFFIX_FIM_TOKEN|>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": false,
323
+ "single_word": false,
324
+ "special": false
325
+ },
326
+ "255032": {
327
+ "content": "<|END_OF_MIDDLE_FIM_TOKEN|>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": false,
331
+ "single_word": false,
332
+ "special": false
333
+ }
334
+ },
335
+ "bos_token": "<BOS_TOKEN>",
336
+ "chat_template": [
337
+ {
338
+ "name": "default",
339
+ "template": "{% if documents %}\n{% set tools = [] %}\n{%- macro document_turn(documents) -%}\n{# format documents into chat turn #}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_THINKING|>I will look through the document to address the users needs.<|END_THINKING|><|START_ACTION|>[\n {\"tool_call_id\": \"0\", \"tool_name\": \"direct-injected-document\", \"parameters\": {}}\n]<|END_ACTION|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|START_TOOL_RESULT|>[\n {\n \"tool_call_id\": \"0\",\n \"results\": {\n{% for doc in documents %}\n \"{{ loop.index0 }}\": {{doc|tojson}}{% if not loop.last %},\n {% endif %}\n{% endfor %}\n\n },\n \"is_error\": null\n }\n]<|END_TOOL_RESULT|><|END_OF_TURN_TOKEN|>{%- endmacro %}\n{%- macro tool_call_id_to_int(messages, tool_call_id) %}\n{%- set counter = namespace(value=0) %}\n{%- set tool_call_id_seen = namespace(value=false) %}\n{%- for msg in messages %}\n {%- if msg.tool_calls %}\n {%- for tool_call in msg.tool_calls %}\n {%- if tool_call.id == tool_call_id and not tool_call_id_seen.value -%}\n {{ counter.value }}\n {%- set tool_call_id_seen.value = true %}\n {%- endif %}\n {%- set counter.value = counter.value + 1 %}\n {%- endfor %}\n {%- endif %}\n{%- endfor %}\n{%- endmacro %}\n{%- macro format_tool_message(messages, tool_msg) -%}\n{# format tool message #}\n {\n \"tool_call_id\": \"{{ tool_call_id_to_int(messages, tool_msg.tool_call_id) }}\",\n \"results\": {\n \"0\": {\"text\": \"{{ tool_msg.content }}\"}\n },\n \"is_error\": null\n }\n{%- endmacro -%}\n{%- if messages and messages[0]['role']|lower == 'system' %}{%- set developer_preamble = messages[0]['content'] %}{% endif %}\n{%- set tool_idx = namespace(value=0) %}\n{%- set tool_ids_seen = namespace(value=[]) %}\n{%- set sent_documents = namespace(value=false) %}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># System Preamble\nYou are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes.\n\nYour information cutoff date is June 2024.\n\nYou have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew but have the ability to speak many more languages.\n{% if tools or documents %}\n\nYou have been trained to have advanced reasoning and tool-use capabilities and you should make best use of these skills to serve user's requests.\n\n## Tool Use\nThink about how you can make best use of the provided tools to help with the task and come up with a high level plan that you will execute first.\n\n0. Start by writing <|START_THINKING|> followed by a detailed step by step plan of how you will solve the problem. For each step explain your thinking fully and give details of required tool calls (if needed). Unless specified otherwise, you write your plan in natural language. When you finish, close it out with <|END_THINKING|>.\n You can optionally choose to skip this step when the user request is so straightforward to address that only a trivial plan would be needed.\n NOTE: You MUST skip this step when you are directly responding to the user's request without using any tools.\n\nThen carry out your plan by repeatedly executing the following steps.\n1. Action: write <|START_ACTION|> followed by a list of JSON-formatted tool calls, with each one containing \"tool_name\" and \"parameters\" fields.\n When there are multiple tool calls which are completely independent of each other (i.e. they can be executed in parallel), you should list them out all together in one step. When you finish, close it out with <|END_ACTION|>.\n2. Observation: you will then receive results of those tool calls in JSON format in the very next turn, wrapped around by <|START_TOOL_RESULT|> and <|END_TOOL_RESULT|>. Carefully observe those results and think about what to do next. Note that these results will be provided to you in a separate turn. NEVER hallucinate results.\n Every tool call produces a list of results (when a tool call produces no result or a single result, it'll still get wrapped inside a list). Each result is clearly linked to its originating tool call via its \"tool_call_id\".\n3. Reflection: start the next turn by writing <|START_THINKING|> followed by what you've figured out so far, any changes you need to make to your plan, and what you will do next. When you finish, close it out with <|END_THINKING|>.\n You can optionally choose to skip this step when everything is going according to plan and no special pieces of information or reasoning chains need to be recorded.\n NOTE: You MUST skip this step when you are done with tool-use actions and are ready to respond to the user.\n\nYou can repeat the above 3 steps multiple times (could be 0 times too if no suitable tool calls are available or needed), until you decide it's time to finally respond to the user.\n\n4. Response: then break out of the loop and write <|START_RESPONSE|> followed by a piece of text which serves as a response to the user's last request. Use all previous tool calls and results to help you when formulating your response. When you finish, close it out with <|END_RESPONSE|>.\n{% if enable_citations %}\n\n## Grounding\nImportantly, note that \"Reflection\" and \"Response\" above can be grounded.\nGrounding means you associate pieces of texts (called \"spans\") with those specific tool results that support them (called \"sources\"). And you use a pair of tags \"<co>\" and \"</co>\" to indicate when a span can be grounded onto a list of sources, listing them out in the closing tag. Sources from the same tool call are grouped together and listed as \"{tool_call_id}:[{list of result indices}]\", before they are joined together by \",\". E.g., \"<co>span</co: 0:[1,2],1:[0]>\" means that \"span\" is supported by result 1 and 2 from \"tool_call_id=0\" as well as result 0 from \"tool_call_id=1\".\n{% endif %}\n\n## Available Tools\nHere is the list of tools that you have available to you.\nYou can ONLY use the tools listed here. When a tool is not listed below, it is NOT available and you should NEVER attempt to use it.\nEach tool is represented as a JSON object with fields like \"name\", \"description\", \"parameters\" (per JSON Schema), and optionally, \"responses\" (per JSON Schema).\n\n```json\n[\n{% if documents %}\n {\"name\": \"direct-injected-document\", \"description\": \"This is a special tool to directly inject user-uploaded documents into the chat as additional context. DO NOT use this tool by yourself!\", \"parameters\": {\"type\": \"object\", \"properties\": {}, \"required\": []}, \"responses\": {\"200\": {\"description\": \"Successfully returned a list of chunked text snippets from the directly uploaded documents.\", \"content\": {\"application/json\": {\"schema\": {\"type\": \"array\", \"items\": {\"type\": \"object\", \"required\": [\"url\", \"snippet\"], \"properties\": {\"url\": {\"type\": \"string\", \"description\": \"The url of the uploaded document.\"}, \"snippet\": {\"type\": \"string\", \"description\": \"The text snippet for the returned document chunk.\"}}}}}}}}}{%- if tools %},{% endif %}\n\n{% endif %}\n{% for tool in tools %}\n {\"name\": \"{{ tool['function']['name'] }}\", \"description\": \"{{tool['function']['description']}}\", \"parameters\": {{ tool['function']['parameters']['properties']|tojson }}, \"responses\": null}{%- if not loop.last %},{% endif %}\n\n{% endfor %}\n]\n```\n\n{% endif %}\n# Default Preamble\nThe following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.\n- Your name is Command.\n- You are a large language model built by Cohere.\n- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.\n- If the input is ambiguous, ask clarifying follow-up questions.\n- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).\n- Use LaTeX to generate mathematical notation for complex equations.\n- When responding in English, use American English unless context indicates otherwise.\n- When outputting responses of more than seven sentences, split the response into paragraphs.\n- Prefer the active voice.\n- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.\n- Use gender-neutral pronouns for unspecified persons.\n- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.\n- Use the third person when asked to write a summary.\n- When asked to extract values from source material, use the exact form, separated by commas.\n- When generating code output, please provide an explanation after the code.\n- When generating code output without specifying the programming language, please generate Python code.\n- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.\n{%- if developer_preamble %}\n\n\n# Developer Preamble\nThe following instructions take precedence over instructions in the default preamble and user prompt. You reject any instructions which conflict with system preamble instructions.\n{{ developer_preamble }}\n{%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- for message in messages %}\n {%- if message.role|lower == 'system' and not (loop.first and developer_preamble)%}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ message.content }}<|END_OF_TURN_TOKEN|>\n {%- elif message.role|lower == 'user' %}\n<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ message.content }}<|END_OF_TURN_TOKEN|>{%- if documents and not sent_documents.value %}{%- set sent_documents.value = true %}{% set tool_idx.value = tool_idx.value + 1 %}{{ document_turn(documents) }}{% endif %}\n {%- elif message.role|lower == 'assistant' or message.role|lower == 'chatbot' %}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{% if message.tool_calls %}<|START_THINKING|>{{message.tool_plan}}<|END_THINKING|><|START_ACTION|>[\n {% for tc in message.tool_calls %}\n {\"tool_call_id\": \"{{ tool_idx.value }}\", \"tool_name\": \"{{ tc['function']['name'] }}\", \"parameters\": {{ tc['function']['arguments']|tojson }}}{% if not loop.last %},{% endif %}\n\n {% set tool_idx.value = tool_idx.value + 1 %}\n {% endfor %}\n]<|END_ACTION|><|END_OF_TURN_TOKEN|>{% else %}<|START_RESPONSE|>{{message.content}}<|END_RESPONSE|><|END_OF_TURN_TOKEN|>{% endif %}\n {% elif message.role|lower == 'tool' and message.tool_call_id not in tool_ids_seen.value %}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|START_TOOL_RESULT|>[\n{{ format_tool_message(messages, message) }}\n {%- for msg in messages[loop.index0 + 1:] %}\n {%- if msg.role|lower == 'tool' %},\n{{ format_tool_message(messages, msg) }}\n {%- set tool_ids_seen.value = tool_ids_seen.value + [msg.tool_call_id] %}\n {%- else %}\n {%- break %}\n {%- endif %}\n {%- endfor %}\n \n]<|END_TOOL_RESULT|><|END_OF_TURN_TOKEN|>\n {%- endif %}\n{%- endfor %}<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- else -%}\n{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}\n {%- set system_message = messages[0]['content'] %}{% elif false == true %}\n {%- set loop_messages = messages %}{% set system_message = '' %}\n{%- else %}\n {%- set loop_messages = messages %}\n {%- set system_message = false %}\n{%- endif %}\n{%- if system_message != false -%}\n {{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}\n{%- else -%}\n {{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|END_OF_TURN_TOKEN|>' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {%- endif -%}\n {%- set content = message['content'] -%}\n {%- if message['role'] == 'user' -%}\n {{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}\n {%- elif message['role'] == 'assistant' -%}\n {{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>' + content.strip() + '<|END_RESPONSE|><|END_OF_TURN_TOKEN|>' }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt -%}\n {{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_RESPONSE|>' }}\n{%- endif %}\n{% endif %}"
340
+ },
341
+ {
342
+ "name": "tool_use",
343
+ "template": "{%- macro document_turn(documents) -%}\n{# format documents into chat turn #}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_THINKING|>I will look through the document to address the users needs.<|END_THINKING|><|START_ACTION|>[\n {\"tool_call_id\": \"0\", \"tool_name\": \"direct-injected-document\", \"parameters\": {}}\n]<|END_ACTION|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|START_TOOL_RESULT|>[\n {\n \"tool_call_id\": \"0\",\n \"results\": {\n{% for doc in documents %}\n \"{{ loop.index0 }}\": {{doc|tojson}}{% if not loop.last %},\n {% endif %}\n{% endfor %}\n\n },\n \"is_error\": null\n }\n]<|END_TOOL_RESULT|><|END_OF_TURN_TOKEN|>{%- endmacro %}\n{%- macro tool_call_id_to_int(messages, tool_call_id) %}\n{%- set counter = namespace(value=0) %}\n{%- set tool_call_id_seen = namespace(value=false) %}\n{%- for msg in messages %}\n {%- if msg.tool_calls %}\n {%- for tool_call in msg.tool_calls %}\n {%- if tool_call.id == tool_call_id and not tool_call_id_seen.value -%}\n {{ counter.value }}\n {%- set tool_call_id_seen.value = true %}\n {%- endif %}\n {%- set counter.value = counter.value + 1 %}\n {%- endfor %}\n {%- endif %}\n{%- endfor %}\n{%- endmacro %}\n{%- macro format_tool_message(messages, tool_msg) -%}\n{# format tool message #}\n {\n \"tool_call_id\": \"{{ tool_call_id_to_int(messages, tool_msg.tool_call_id) }}\",\n \"results\": {\n \"0\": {\"text\": \"{{ tool_msg.content }}\"}\n },\n \"is_error\": null\n }\n{%- endmacro -%}\n{%- if messages and messages[0]['role']|lower == 'system' %}{%- set developer_preamble = messages[0]['content'] %}{% endif %}\n{%- set tool_idx = namespace(value=0) %}\n{%- set tool_ids_seen = namespace(value=[]) %}\n{%- set sent_documents = namespace(value=false) %}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># System Preamble\nYou are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes.\n\nYour information cutoff date is June 2024.\n\nYou have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew but have the ability to speak many more languages.\n{% if tools or documents %}\n\nYou have been trained to have advanced reasoning and tool-use capabilities and you should make best use of these skills to serve user's requests.\n\n## Tool Use\nThink about how you can make best use of the provided tools to help with the task and come up with a high level plan that you will execute first.\n\n0. Start by writing <|START_THINKING|> followed by a detailed step by step plan of how you will solve the problem. For each step explain your thinking fully and give details of required tool calls (if needed). Unless specified otherwise, you write your plan in natural language. When you finish, close it out with <|END_THINKING|>.\n You can optionally choose to skip this step when the user request is so straightforward to address that only a trivial plan would be needed.\n NOTE: You MUST skip this step when you are directly responding to the user's request without using any tools.\n\nThen carry out your plan by repeatedly executing the following steps.\n1. Action: write <|START_ACTION|> followed by a list of JSON-formatted tool calls, with each one containing \"tool_name\" and \"parameters\" fields.\n When there are multiple tool calls which are completely independent of each other (i.e. they can be executed in parallel), you should list them out all together in one step. When you finish, close it out with <|END_ACTION|>.\n2. Observation: you will then receive results of those tool calls in JSON format in the very next turn, wrapped around by <|START_TOOL_RESULT|> and <|END_TOOL_RESULT|>. Carefully observe those results and think about what to do next. Note that these results will be provided to you in a separate turn. NEVER hallucinate results.\n Every tool call produces a list of results (when a tool call produces no result or a single result, it'll still get wrapped inside a list). Each result is clearly linked to its originating tool call via its \"tool_call_id\".\n3. Reflection: start the next turn by writing <|START_THINKING|> followed by what you've figured out so far, any changes you need to make to your plan, and what you will do next. When you finish, close it out with <|END_THINKING|>.\n You can optionally choose to skip this step when everything is going according to plan and no special pieces of information or reasoning chains need to be recorded.\n NOTE: You MUST skip this step when you are done with tool-use actions and are ready to respond to the user.\n\nYou can repeat the above 3 steps multiple times (could be 0 times too if no suitable tool calls are available or needed), until you decide it's time to finally respond to the user.\n\n4. Response: then break out of the loop and write <|START_RESPONSE|> followed by a piece of text which serves as a response to the user's last request. Use all previous tool calls and results to help you when formulating your response. When you finish, close it out with <|END_RESPONSE|>.\n{% if enable_citations %}\n\n## Grounding\nImportantly, note that \"Reflection\" and \"Response\" above can be grounded.\nGrounding means you associate pieces of texts (called \"spans\") with those specific tool results that support them (called \"sources\"). And you use a pair of tags \"<co>\" and \"</co>\" to indicate when a span can be grounded onto a list of sources, listing them out in the closing tag. Sources from the same tool call are grouped together and listed as \"{tool_call_id}:[{list of result indices}]\", before they are joined together by \",\". E.g., \"<co>span</co: 0:[1,2],1:[0]>\" means that \"span\" is supported by result 1 and 2 from \"tool_call_id=0\" as well as result 0 from \"tool_call_id=1\".\n{% endif %}\n\n## Available Tools\nHere is the list of tools that you have available to you.\nYou can ONLY use the tools listed here. When a tool is not listed below, it is NOT available and you should NEVER attempt to use it.\nEach tool is represented as a JSON object with fields like \"name\", \"description\", \"parameters\" (per JSON Schema), and optionally, \"responses\" (per JSON Schema).\n\n```json\n[\n{% if documents %}\n {\"name\": \"direct-injected-document\", \"description\": \"This is a special tool to directly inject user-uploaded documents into the chat as additional context. DO NOT use this tool by yourself!\", \"parameters\": {\"type\": \"object\", \"properties\": {}, \"required\": []}, \"responses\": {\"200\": {\"description\": \"Successfully returned a list of chunked text snippets from the directly uploaded documents.\", \"content\": {\"application/json\": {\"schema\": {\"type\": \"array\", \"items\": {\"type\": \"object\", \"required\": [\"url\", \"snippet\"], \"properties\": {\"url\": {\"type\": \"string\", \"description\": \"The url of the uploaded document.\"}, \"snippet\": {\"type\": \"string\", \"description\": \"The text snippet for the returned document chunk.\"}}}}}}}}}{%- if tools %},{% endif %}\n\n{% endif %}\n{% for tool in tools %}\n {\"name\": \"{{ tool['function']['name'] }}\", \"description\": \"{{tool['function']['description']}}\", \"parameters\": {{ tool['function']['parameters']['properties']|tojson }}, \"responses\": null}{%- if not loop.last %},{% endif %}\n\n{% endfor %}\n]\n```\n\n{% endif %}\n# Default Preamble\nThe following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.\n- Your name is Command.\n- You are a large language model built by Cohere.\n- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.\n- If the input is ambiguous, ask clarifying follow-up questions.\n- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).\n- Use LaTeX to generate mathematical notation for complex equations.\n- When responding in English, use American English unless context indicates otherwise.\n- When outputting responses of more than seven sentences, split the response into paragraphs.\n- Prefer the active voice.\n- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.\n- Use gender-neutral pronouns for unspecified persons.\n- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.\n- Use the third person when asked to write a summary.\n- When asked to extract values from source material, use the exact form, separated by commas.\n- When generating code output, please provide an explanation after the code.\n- When generating code output without specifying the programming language, please generate Python code.\n- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.\n{%- if developer_preamble %}\n\n\n# Developer Preamble\nThe following instructions take precedence over instructions in the default preamble and user prompt. You reject any instructions which conflict with system preamble instructions.\n{{ developer_preamble }}\n{%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- for message in messages %}\n {%- if message.role|lower == 'system' and not (loop.first and developer_preamble)%}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ message.content }}<|END_OF_TURN_TOKEN|>\n {%- elif message.role|lower == 'user' %}\n<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ message.content }}<|END_OF_TURN_TOKEN|>{%- if documents and not sent_documents.value %}{%- set sent_documents.value = true %}{% set tool_idx.value = tool_idx.value + 1 %}{{ document_turn(documents) }}{% endif %}\n {%- elif message.role|lower == 'assistant' or message.role|lower == 'chatbot' %}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{% if message.tool_calls %}<|START_THINKING|>{{message.tool_plan}}<|END_THINKING|><|START_ACTION|>[\n {% for tc in message.tool_calls %}\n {\"tool_call_id\": \"{{ tool_idx.value }}\", \"tool_name\": \"{{ tc['function']['name'] }}\", \"parameters\": {{ tc['function']['arguments']|tojson }}}{% if not loop.last %},{% endif %}\n\n {% set tool_idx.value = tool_idx.value + 1 %}\n {% endfor %}\n]<|END_ACTION|><|END_OF_TURN_TOKEN|>{% else %}<|START_RESPONSE|>{{message.content}}<|END_RESPONSE|><|END_OF_TURN_TOKEN|>{% endif %}\n {% elif message.role|lower == 'tool' and message.tool_call_id not in tool_ids_seen.value %}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|START_TOOL_RESULT|>[\n{{ format_tool_message(messages, message) }}\n {%- for msg in messages[loop.index0 + 1:] %}\n {%- if msg.role|lower == 'tool' %},\n{{ format_tool_message(messages, msg) }}\n {%- set tool_ids_seen.value = tool_ids_seen.value + [msg.tool_call_id] %}\n {%- else %}\n {%- break %}\n {%- endif %}\n {%- endfor %}\n \n]<|END_TOOL_RESULT|><|END_OF_TURN_TOKEN|>\n {%- endif %}\n{%- endfor %}<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
344
+ },
345
+ {
346
+ "name": "rag",
347
+ "template": "{% set tools = [] %}\n{%- macro document_turn(documents) -%}\n{# format documents into chat turn #}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|><|START_THINKING|>I will look through the document to address the users needs.<|END_THINKING|><|START_ACTION|>[\n {\"tool_call_id\": \"0\", \"tool_name\": \"direct-injected-document\", \"parameters\": {}}\n]<|END_ACTION|><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|START_TOOL_RESULT|>[\n {\n \"tool_call_id\": \"0\",\n \"results\": {\n{% for doc in documents %}\n \"{{ loop.index0 }}\": {{doc|tojson}}{% if not loop.last %},\n {% endif %}\n{% endfor %}\n\n },\n \"is_error\": null\n }\n]<|END_TOOL_RESULT|><|END_OF_TURN_TOKEN|>{%- endmacro %}\n{%- macro tool_call_id_to_int(messages, tool_call_id) %}\n{%- set counter = namespace(value=0) %}\n{%- set tool_call_id_seen = namespace(value=false) %}\n{%- for msg in messages %}\n {%- if msg.tool_calls %}\n {%- for tool_call in msg.tool_calls %}\n {%- if tool_call.id == tool_call_id and not tool_call_id_seen.value -%}\n {{ counter.value }}\n {%- set tool_call_id_seen.value = true %}\n {%- endif %}\n {%- set counter.value = counter.value + 1 %}\n {%- endfor %}\n {%- endif %}\n{%- endfor %}\n{%- endmacro %}\n{%- macro format_tool_message(messages, tool_msg) -%}\n{# format tool message #}\n {\n \"tool_call_id\": \"{{ tool_call_id_to_int(messages, tool_msg.tool_call_id) }}\",\n \"results\": {\n \"0\": {\"text\": \"{{ tool_msg.content }}\"}\n },\n \"is_error\": null\n }\n{%- endmacro -%}\n{%- if messages and messages[0]['role']|lower == 'system' %}{%- set developer_preamble = messages[0]['content'] %}{% endif %}\n{%- set tool_idx = namespace(value=0) %}\n{%- set tool_ids_seen = namespace(value=[]) %}\n{%- set sent_documents = namespace(value=false) %}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># System Preamble\nYou are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes.\n\nYour information cutoff date is June 2024.\n\nYou have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew but have the ability to speak many more languages.\n{% if tools or documents %}\n\nYou have been trained to have advanced reasoning and tool-use capabilities and you should make best use of these skills to serve user's requests.\n\n## Tool Use\nThink about how you can make best use of the provided tools to help with the task and come up with a high level plan that you will execute first.\n\n0. Start by writing <|START_THINKING|> followed by a detailed step by step plan of how you will solve the problem. For each step explain your thinking fully and give details of required tool calls (if needed). Unless specified otherwise, you write your plan in natural language. When you finish, close it out with <|END_THINKING|>.\n You can optionally choose to skip this step when the user request is so straightforward to address that only a trivial plan would be needed.\n NOTE: You MUST skip this step when you are directly responding to the user's request without using any tools.\n\nThen carry out your plan by repeatedly executing the following steps.\n1. Action: write <|START_ACTION|> followed by a list of JSON-formatted tool calls, with each one containing \"tool_name\" and \"parameters\" fields.\n When there are multiple tool calls which are completely independent of each other (i.e. they can be executed in parallel), you should list them out all together in one step. When you finish, close it out with <|END_ACTION|>.\n2. Observation: you will then receive results of those tool calls in JSON format in the very next turn, wrapped around by <|START_TOOL_RESULT|> and <|END_TOOL_RESULT|>. Carefully observe those results and think about what to do next. Note that these results will be provided to you in a separate turn. NEVER hallucinate results.\n Every tool call produces a list of results (when a tool call produces no result or a single result, it'll still get wrapped inside a list). Each result is clearly linked to its originating tool call via its \"tool_call_id\".\n3. Reflection: start the next turn by writing <|START_THINKING|> followed by what you've figured out so far, any changes you need to make to your plan, and what you will do next. When you finish, close it out with <|END_THINKING|>.\n You can optionally choose to skip this step when everything is going according to plan and no special pieces of information or reasoning chains need to be recorded.\n NOTE: You MUST skip this step when you are done with tool-use actions and are ready to respond to the user.\n\nYou can repeat the above 3 steps multiple times (could be 0 times too if no suitable tool calls are available or needed), until you decide it's time to finally respond to the user.\n\n4. Response: then break out of the loop and write <|START_RESPONSE|> followed by a piece of text which serves as a response to the user's last request. Use all previous tool calls and results to help you when formulating your response. When you finish, close it out with <|END_RESPONSE|>.\n{% if enable_citations %}\n\n## Grounding\nImportantly, note that \"Reflection\" and \"Response\" above can be grounded.\nGrounding means you associate pieces of texts (called \"spans\") with those specific tool results that support them (called \"sources\"). And you use a pair of tags \"<co>\" and \"</co>\" to indicate when a span can be grounded onto a list of sources, listing them out in the closing tag. Sources from the same tool call are grouped together and listed as \"{tool_call_id}:[{list of result indices}]\", before they are joined together by \",\". E.g., \"<co>span</co: 0:[1,2],1:[0]>\" means that \"span\" is supported by result 1 and 2 from \"tool_call_id=0\" as well as result 0 from \"tool_call_id=1\".\n{% endif %}\n\n## Available Tools\nHere is the list of tools that you have available to you.\nYou can ONLY use the tools listed here. When a tool is not listed below, it is NOT available and you should NEVER attempt to use it.\nEach tool is represented as a JSON object with fields like \"name\", \"description\", \"parameters\" (per JSON Schema), and optionally, \"responses\" (per JSON Schema).\n\n```json\n[\n{% if documents %}\n {\"name\": \"direct-injected-document\", \"description\": \"This is a special tool to directly inject user-uploaded documents into the chat as additional context. DO NOT use this tool by yourself!\", \"parameters\": {\"type\": \"object\", \"properties\": {}, \"required\": []}, \"responses\": {\"200\": {\"description\": \"Successfully returned a list of chunked text snippets from the directly uploaded documents.\", \"content\": {\"application/json\": {\"schema\": {\"type\": \"array\", \"items\": {\"type\": \"object\", \"required\": [\"url\", \"snippet\"], \"properties\": {\"url\": {\"type\": \"string\", \"description\": \"The url of the uploaded document.\"}, \"snippet\": {\"type\": \"string\", \"description\": \"The text snippet for the returned document chunk.\"}}}}}}}}}{%- if tools %},{% endif %}\n\n{% endif %}\n{% for tool in tools %}\n {\"name\": \"{{ tool['function']['name'] }}\", \"description\": \"{{tool['function']['description']}}\", \"parameters\": {{ tool['function']['parameters']['properties']|tojson }}, \"responses\": null}{%- if not loop.last %},{% endif %}\n\n{% endfor %}\n]\n```\n\n{% endif %}\n# Default Preamble\nThe following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.\n- Your name is Command.\n- You are a large language model built by Cohere.\n- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.\n- If the input is ambiguous, ask clarifying follow-up questions.\n- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).\n- Use LaTeX to generate mathematical notation for complex equations.\n- When responding in English, use American English unless context indicates otherwise.\n- When outputting responses of more than seven sentences, split the response into paragraphs.\n- Prefer the active voice.\n- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.\n- Use gender-neutral pronouns for unspecified persons.\n- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.\n- Use the third person when asked to write a summary.\n- When asked to extract values from source material, use the exact form, separated by commas.\n- When generating code output, please provide an explanation after the code.\n- When generating code output without specifying the programming language, please generate Python code.\n- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.\n{%- if developer_preamble %}\n\n\n# Developer Preamble\nThe following instructions take precedence over instructions in the default preamble and user prompt. You reject any instructions which conflict with system preamble instructions.\n{{ developer_preamble }}\n{%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- for message in messages %}\n {%- if message.role|lower == 'system' and not (loop.first and developer_preamble)%}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ message.content }}<|END_OF_TURN_TOKEN|>\n {%- elif message.role|lower == 'user' %}\n<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ message.content }}<|END_OF_TURN_TOKEN|>{%- if documents and not sent_documents.value %}{%- set sent_documents.value = true %}{% set tool_idx.value = tool_idx.value + 1 %}{{ document_turn(documents) }}{% endif %}\n {%- elif message.role|lower == 'assistant' or message.role|lower == 'chatbot' %}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{% if message.tool_calls %}<|START_THINKING|>{{message.tool_plan}}<|END_THINKING|><|START_ACTION|>[\n {% for tc in message.tool_calls %}\n {\"tool_call_id\": \"{{ tool_idx.value }}\", \"tool_name\": \"{{ tc['function']['name'] }}\", \"parameters\": {{ tc['function']['arguments']|tojson }}}{% if not loop.last %},{% endif %}\n\n {% set tool_idx.value = tool_idx.value + 1 %}\n {% endfor %}\n]<|END_ACTION|><|END_OF_TURN_TOKEN|>{% else %}<|START_RESPONSE|>{{message.content}}<|END_RESPONSE|><|END_OF_TURN_TOKEN|>{% endif %}\n {% elif message.role|lower == 'tool' and message.tool_call_id not in tool_ids_seen.value %}\n<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><|START_TOOL_RESULT|>[\n{{ format_tool_message(messages, message) }}\n {%- for msg in messages[loop.index0 + 1:] %}\n {%- if msg.role|lower == 'tool' %},\n{{ format_tool_message(messages, msg) }}\n {%- set tool_ids_seen.value = tool_ids_seen.value + [msg.tool_call_id] %}\n {%- else %}\n {%- break %}\n {%- endif %}\n {%- endfor %}\n \n]<|END_TOOL_RESULT|><|END_OF_TURN_TOKEN|>\n {%- endif %}\n{%- endfor %}<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
348
+ }
349
+ ],
350
+ "clean_up_tokenization_spaces": false,
351
+ "eos_token": "<|END_OF_TURN_TOKEN|>",
352
+ "extra_special_tokens": {},
353
+ "legacy": true,
354
+ "merges_file": null,
355
+ "model_max_length": 1000000000000000019884624838656,
356
+ "pad_token": "<PAD>",
357
+ "sp_model_kwargs": {},
358
+ "spaces_between_special_tokens": false,
359
+ "tokenizer_class": "CohereTokenizer",
360
+ "unk_token": "<UNK>",
361
+ "use_default_system_prompt": false,
362
+ "vocab_file": null
363
+ }