Delete https:
Browse files- https:/huggingface.co/esunn/1min-v2-luxia-8b/.ipynb_checkpoints/zero_to_fp32-checkpoint.py +0 -604
- https:/huggingface.co/esunn/1min-v2-luxia-8b/config.json +0 -28
- https:/huggingface.co/esunn/1min-v2-luxia-8b/generation_config.json +0 -7
- https:/huggingface.co/esunn/1min-v2-luxia-8b/latest +0 -1
- https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00001-of-00004.safetensors +0 -3
- https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00002-of-00004.safetensors +0 -3
- https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00003-of-00004.safetensors +0 -3
- https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00004-of-00004.safetensors +0 -3
- https:/huggingface.co/esunn/1min-v2-luxia-8b/model.safetensors.index.json +0 -298
- https:/huggingface.co/esunn/1min-v2-luxia-8b/scheduler.pt +0 -3
- https:/huggingface.co/esunn/1min-v2-luxia-8b/special_tokens_map.json +0 -26
- https:/huggingface.co/esunn/1min-v2-luxia-8b/tokenizer.json +0 -0
- https:/huggingface.co/esunn/1min-v2-luxia-8b/tokenizer_config.json +0 -2076
- https:/huggingface.co/esunn/1min-v2-luxia-8b/trainer_state.json +0 -1168
- https:/huggingface.co/esunn/1min-v2-luxia-8b/training_args.bin +0 -3
- https:/huggingface.co/esunn/1min-v2-luxia-8b/zero_to_fp32.py +0 -604
https:/huggingface.co/esunn/1min-v2-luxia-8b/.ipynb_checkpoints/zero_to_fp32-checkpoint.py
DELETED
@@ -1,604 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# SPDX-License-Identifier: Apache-2.0
|
5 |
-
|
6 |
-
# DeepSpeed Team
|
7 |
-
|
8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
-
# application.
|
12 |
-
#
|
13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
-
|
15 |
-
import argparse
|
16 |
-
import torch
|
17 |
-
import glob
|
18 |
-
import math
|
19 |
-
import os
|
20 |
-
import re
|
21 |
-
from collections import OrderedDict
|
22 |
-
from dataclasses import dataclass
|
23 |
-
|
24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
-
from deepspeed.utils import logger
|
27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
-
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class zero_model_state:
|
34 |
-
buffers: dict()
|
35 |
-
param_shapes: dict()
|
36 |
-
shared_params: list
|
37 |
-
ds_version: int
|
38 |
-
frozen_param_shapes: dict()
|
39 |
-
frozen_param_fragments: dict()
|
40 |
-
|
41 |
-
|
42 |
-
debug = 0
|
43 |
-
|
44 |
-
# load to cpu
|
45 |
-
device = torch.device('cpu')
|
46 |
-
|
47 |
-
|
48 |
-
def atoi(text):
|
49 |
-
return int(text) if text.isdigit() else text
|
50 |
-
|
51 |
-
|
52 |
-
def natural_keys(text):
|
53 |
-
'''
|
54 |
-
alist.sort(key=natural_keys) sorts in human order
|
55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
-
(See Toothy's implementation in the comments)
|
57 |
-
'''
|
58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
-
|
60 |
-
|
61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
-
if not os.path.isdir(checkpoint_dir):
|
63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
-
|
65 |
-
# there should be only one file
|
66 |
-
if zero_stage <= 2:
|
67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
-
elif zero_stage == 3:
|
69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
-
|
71 |
-
if not os.path.exists(file):
|
72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
-
|
74 |
-
return file
|
75 |
-
|
76 |
-
|
77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
-
|
81 |
-
if len(ckpt_files) == 0:
|
82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
-
|
84 |
-
return ckpt_files
|
85 |
-
|
86 |
-
|
87 |
-
def get_optim_files(checkpoint_dir):
|
88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
-
|
90 |
-
|
91 |
-
def get_model_state_files(checkpoint_dir):
|
92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
-
|
94 |
-
|
95 |
-
def parse_model_states(files):
|
96 |
-
zero_model_states = []
|
97 |
-
for file in files:
|
98 |
-
state_dict = torch.load(file, map_location=device)
|
99 |
-
|
100 |
-
if BUFFER_NAMES not in state_dict:
|
101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
-
if debug:
|
104 |
-
print("Found buffers:", buffer_names)
|
105 |
-
|
106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
-
|
110 |
-
# collect parameters that are included in param_shapes
|
111 |
-
param_names = []
|
112 |
-
for s in param_shapes:
|
113 |
-
for name in s.keys():
|
114 |
-
param_names.append(name)
|
115 |
-
|
116 |
-
# update with frozen parameters
|
117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
-
if frozen_param_shapes is not None:
|
119 |
-
if debug:
|
120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
-
param_names += list(frozen_param_shapes.keys())
|
122 |
-
|
123 |
-
# handle shared params
|
124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
-
|
126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
-
|
128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
-
|
130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
131 |
-
param_shapes=param_shapes,
|
132 |
-
shared_params=shared_params,
|
133 |
-
ds_version=ds_version,
|
134 |
-
frozen_param_shapes=frozen_param_shapes,
|
135 |
-
frozen_param_fragments=frozen_param_fragments)
|
136 |
-
zero_model_states.append(z_model_state)
|
137 |
-
|
138 |
-
return zero_model_states
|
139 |
-
|
140 |
-
|
141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
-
|
143 |
-
total_files = len(files)
|
144 |
-
state_dicts = []
|
145 |
-
for f in files:
|
146 |
-
state_dict = torch.load(f, map_location=device)
|
147 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
-
# and also handle the case where it was already removed by another helper script
|
149 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
-
state_dicts.append(state_dict)
|
151 |
-
|
152 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
-
|
157 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
-
# use the max of the partition_count to get the dp world_size.
|
160 |
-
|
161 |
-
if type(world_size) is list:
|
162 |
-
world_size = max(world_size)
|
163 |
-
|
164 |
-
if world_size != total_files:
|
165 |
-
raise ValueError(
|
166 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
-
)
|
169 |
-
|
170 |
-
# the groups are named differently in each stage
|
171 |
-
if zero_stage <= 2:
|
172 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
-
elif zero_stage == 3:
|
174 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
-
else:
|
176 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
-
|
178 |
-
if zero_stage <= 2:
|
179 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
-
elif zero_stage == 3:
|
181 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
-
#
|
184 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
-
|
187 |
-
fp32_flat_groups = [
|
188 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
-
]
|
190 |
-
|
191 |
-
return zero_stage, world_size, fp32_flat_groups
|
192 |
-
|
193 |
-
|
194 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
-
"""
|
196 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
-
|
198 |
-
Args:
|
199 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
-
|
201 |
-
"""
|
202 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
-
|
204 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
-
|
208 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
-
|
210 |
-
zero_model_states = parse_model_states(model_files)
|
211 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
-
|
213 |
-
if zero_stage <= 2:
|
214 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
-
exclude_frozen_parameters)
|
216 |
-
elif zero_stage == 3:
|
217 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
-
exclude_frozen_parameters)
|
219 |
-
|
220 |
-
|
221 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
-
return
|
224 |
-
|
225 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
-
|
228 |
-
if debug:
|
229 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
-
|
232 |
-
wanted_params = len(frozen_param_shapes)
|
233 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
-
|
238 |
-
total_params = 0
|
239 |
-
total_numel = 0
|
240 |
-
for name, shape in frozen_param_shapes.items():
|
241 |
-
total_params += 1
|
242 |
-
unpartitioned_numel = shape.numel()
|
243 |
-
total_numel += unpartitioned_numel
|
244 |
-
|
245 |
-
state_dict[name] = frozen_param_fragments[name]
|
246 |
-
|
247 |
-
if debug:
|
248 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
-
|
250 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
-
|
252 |
-
|
253 |
-
def _has_callable(obj, fn):
|
254 |
-
attr = getattr(obj, fn, None)
|
255 |
-
return callable(attr)
|
256 |
-
|
257 |
-
|
258 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
-
param_shapes = zero_model_states[0].param_shapes
|
260 |
-
|
261 |
-
# Reconstruction protocol:
|
262 |
-
#
|
263 |
-
# XXX: document this
|
264 |
-
|
265 |
-
if debug:
|
266 |
-
for i in range(world_size):
|
267 |
-
for j in range(len(fp32_flat_groups[0])):
|
268 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
-
|
270 |
-
# XXX: memory usage doubles here (zero2)
|
271 |
-
num_param_groups = len(fp32_flat_groups[0])
|
272 |
-
merged_single_partition_of_fp32_groups = []
|
273 |
-
for i in range(num_param_groups):
|
274 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
-
avail_numel = sum(
|
278 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
-
|
280 |
-
if debug:
|
281 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
-
# not asserting if there is a mismatch due to possible padding
|
284 |
-
print(f"Have {avail_numel} numels to process.")
|
285 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
-
|
287 |
-
# params
|
288 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
-
# out-of-core computing solution
|
290 |
-
total_numel = 0
|
291 |
-
total_params = 0
|
292 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
-
offset = 0
|
294 |
-
avail_numel = full_single_fp32_vector.numel()
|
295 |
-
for name, shape in shapes.items():
|
296 |
-
|
297 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
-
total_numel += unpartitioned_numel
|
299 |
-
total_params += 1
|
300 |
-
|
301 |
-
if debug:
|
302 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
-
offset += unpartitioned_numel
|
305 |
-
|
306 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
-
align_to = 2 * world_size
|
311 |
-
|
312 |
-
def zero2_align(x):
|
313 |
-
return align_to * math.ceil(x / align_to)
|
314 |
-
|
315 |
-
if debug:
|
316 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
-
|
318 |
-
offset = zero2_align(offset)
|
319 |
-
avail_numel = zero2_align(avail_numel)
|
320 |
-
|
321 |
-
if debug:
|
322 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
-
|
324 |
-
# Sanity check
|
325 |
-
if offset != avail_numel:
|
326 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
-
|
328 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
-
|
330 |
-
|
331 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
-
exclude_frozen_parameters):
|
333 |
-
state_dict = OrderedDict()
|
334 |
-
|
335 |
-
# buffers
|
336 |
-
buffers = zero_model_states[0].buffers
|
337 |
-
state_dict.update(buffers)
|
338 |
-
if debug:
|
339 |
-
print(f"added {len(buffers)} buffers")
|
340 |
-
|
341 |
-
if not exclude_frozen_parameters:
|
342 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
-
|
344 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
-
|
346 |
-
# recover shared parameters
|
347 |
-
for pair in zero_model_states[0].shared_params:
|
348 |
-
if pair[1] in state_dict:
|
349 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
-
|
351 |
-
return state_dict
|
352 |
-
|
353 |
-
|
354 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
-
remainder = unpartitioned_numel % world_size
|
356 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
-
return partitioned_numel, padding_numel
|
359 |
-
|
360 |
-
|
361 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
-
return
|
364 |
-
|
365 |
-
if debug:
|
366 |
-
for i in range(world_size):
|
367 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
-
|
370 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
-
wanted_params = len(frozen_param_shapes)
|
372 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
-
|
377 |
-
total_params = 0
|
378 |
-
total_numel = 0
|
379 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
-
total_params += 1
|
381 |
-
unpartitioned_numel = shape.numel()
|
382 |
-
total_numel += unpartitioned_numel
|
383 |
-
|
384 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
-
|
387 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
-
|
389 |
-
if debug:
|
390 |
-
print(
|
391 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
-
)
|
393 |
-
|
394 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
-
|
396 |
-
|
397 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
-
param_shapes = zero_model_states[0].param_shapes
|
399 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
-
# param, re-consolidating each param, while dealing with padding if any
|
402 |
-
|
403 |
-
# merge list of dicts, preserving order
|
404 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
-
|
406 |
-
if debug:
|
407 |
-
for i in range(world_size):
|
408 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
-
|
410 |
-
wanted_params = len(param_shapes)
|
411 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
-
# not asserting if there is a mismatch due to possible padding
|
413 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
-
|
417 |
-
# params
|
418 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
-
# out-of-core computing solution
|
420 |
-
offset = 0
|
421 |
-
total_numel = 0
|
422 |
-
total_params = 0
|
423 |
-
for name, shape in param_shapes.items():
|
424 |
-
|
425 |
-
unpartitioned_numel = shape.numel()
|
426 |
-
total_numel += unpartitioned_numel
|
427 |
-
total_params += 1
|
428 |
-
|
429 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
-
|
431 |
-
if debug:
|
432 |
-
print(
|
433 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
-
)
|
435 |
-
|
436 |
-
# XXX: memory usage doubles here
|
437 |
-
state_dict[name] = torch.cat(
|
438 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
-
offset += partitioned_numel
|
441 |
-
|
442 |
-
offset *= world_size
|
443 |
-
|
444 |
-
# Sanity check
|
445 |
-
if offset != avail_numel:
|
446 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
-
|
448 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
-
|
450 |
-
|
451 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
-
exclude_frozen_parameters):
|
453 |
-
state_dict = OrderedDict()
|
454 |
-
|
455 |
-
# buffers
|
456 |
-
buffers = zero_model_states[0].buffers
|
457 |
-
state_dict.update(buffers)
|
458 |
-
if debug:
|
459 |
-
print(f"added {len(buffers)} buffers")
|
460 |
-
|
461 |
-
if not exclude_frozen_parameters:
|
462 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
-
|
464 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
-
|
466 |
-
# recover shared parameters
|
467 |
-
for pair in zero_model_states[0].shared_params:
|
468 |
-
if pair[1] in state_dict:
|
469 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
-
|
471 |
-
return state_dict
|
472 |
-
|
473 |
-
|
474 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
-
"""
|
476 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
-
via a model hub.
|
479 |
-
|
480 |
-
Args:
|
481 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
-
|
485 |
-
Returns:
|
486 |
-
- pytorch ``state_dict``
|
487 |
-
|
488 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
-
the checkpoint.
|
491 |
-
|
492 |
-
A typical usage might be ::
|
493 |
-
|
494 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
-
# do the training and checkpoint saving
|
496 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
-
model = model.cpu() # move to cpu
|
498 |
-
model.load_state_dict(state_dict)
|
499 |
-
# submit to model hub or save the model to share with others
|
500 |
-
|
501 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
-
|
505 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
-
|
507 |
-
"""
|
508 |
-
if tag is None:
|
509 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
-
if os.path.isfile(latest_path):
|
511 |
-
with open(latest_path, 'r') as fd:
|
512 |
-
tag = fd.read().strip()
|
513 |
-
else:
|
514 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
-
|
516 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
-
|
518 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
-
|
521 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
-
|
523 |
-
|
524 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
-
"""
|
526 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
-
|
529 |
-
Args:
|
530 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
-
"""
|
535 |
-
|
536 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
-
print(f"Saving fp32 state dict to {output_file}")
|
538 |
-
torch.save(state_dict, output_file)
|
539 |
-
|
540 |
-
|
541 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
-
"""
|
543 |
-
1. Put the provided model to cpu
|
544 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
-
3. Load it into the provided model
|
546 |
-
|
547 |
-
Args:
|
548 |
-
- ``model``: the model object to update
|
549 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
-
|
552 |
-
Returns:
|
553 |
-
- ``model`: modified model
|
554 |
-
|
555 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
-
conveniently placed for you in the checkpoint folder.
|
558 |
-
|
559 |
-
A typical usage might be ::
|
560 |
-
|
561 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
-
# submit to model hub or save the model to share with others
|
564 |
-
|
565 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
-
|
569 |
-
"""
|
570 |
-
logger.info(f"Extracting fp32 weights")
|
571 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
-
|
573 |
-
logger.info(f"Overwriting model with fp32 weights")
|
574 |
-
model = model.cpu()
|
575 |
-
model.load_state_dict(state_dict, strict=False)
|
576 |
-
|
577 |
-
return model
|
578 |
-
|
579 |
-
|
580 |
-
if __name__ == "__main__":
|
581 |
-
|
582 |
-
parser = argparse.ArgumentParser()
|
583 |
-
parser.add_argument("checkpoint_dir",
|
584 |
-
type=str,
|
585 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
-
parser.add_argument(
|
587 |
-
"output_file",
|
588 |
-
type=str,
|
589 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
-
parser.add_argument("-t",
|
591 |
-
"--tag",
|
592 |
-
type=str,
|
593 |
-
default=None,
|
594 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
-
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
-
args = parser.parse_args()
|
598 |
-
|
599 |
-
debug = args.debug
|
600 |
-
|
601 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
-
args.output_file,
|
603 |
-
tag=args.tag,
|
604 |
-
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/config.json
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "maywell/Llama-3-Ko-Luxia-Instruct",
|
3 |
-
"architectures": [
|
4 |
-
"LlamaForCausalLM"
|
5 |
-
],
|
6 |
-
"attention_bias": false,
|
7 |
-
"attention_dropout": 0.0,
|
8 |
-
"bos_token_id": 128000,
|
9 |
-
"eos_token_id": 128001,
|
10 |
-
"hidden_act": "silu",
|
11 |
-
"hidden_size": 4096,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 14336,
|
14 |
-
"max_position_embeddings": 8192,
|
15 |
-
"model_type": "llama",
|
16 |
-
"num_attention_heads": 32,
|
17 |
-
"num_hidden_layers": 32,
|
18 |
-
"num_key_value_heads": 8,
|
19 |
-
"pretraining_tp": 1,
|
20 |
-
"rms_norm_eps": 1e-05,
|
21 |
-
"rope_scaling": null,
|
22 |
-
"rope_theta": 500000.0,
|
23 |
-
"tie_word_embeddings": false,
|
24 |
-
"torch_dtype": "bfloat16",
|
25 |
-
"transformers_version": "4.40.2",
|
26 |
-
"use_cache": false,
|
27 |
-
"vocab_size": 145792
|
28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/generation_config.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 128000,
|
4 |
-
"do_sample": true,
|
5 |
-
"eos_token_id": 128001,
|
6 |
-
"transformers_version": "4.40.2"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/latest
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
global_step133
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00001-of-00004.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:76db2278f8b542a84e10ad4fc59663cb44e6544df7cd04fec3a3d81227deb24b
|
3 |
-
size 4885455712
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00002-of-00004.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f2043798416a4c913a050982436d5881de969b444b5e37df2abc1978e2d14fea
|
3 |
-
size 4915916160
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00003-of-00004.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a3605220200e7bd784fe75163f775523b91cf1cd48f1a4aab1132cd3c02fa92c
|
3 |
-
size 4999819336
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/model-00004-of-00004.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:09f7f4b268ba6fe2a54145f81a642e598b25bb19ae32a1362426ed61b5656ee7
|
3 |
-
size 1546674976
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/model.safetensors.index.json
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 16347832320
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
-
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
-
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
27 |
-
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
-
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
-
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
-
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
-
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
-
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
-
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
-
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
-
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
-
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
-
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
-
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
-
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
-
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
-
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
-
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
-
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
-
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
-
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
-
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
-
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
-
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
-
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
-
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
-
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
-
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
-
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
-
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
-
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
-
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
-
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
-
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
-
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
-
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
-
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
-
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
-
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
-
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
-
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
-
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
-
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
-
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
-
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
-
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
-
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
-
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
-
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
-
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
-
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
-
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
-
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
-
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
-
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
-
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
-
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
-
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
-
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
-
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
-
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
-
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
-
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
-
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
-
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
-
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
-
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
108 |
-
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
109 |
-
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
-
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
-
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
112 |
-
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
-
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
-
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
-
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
-
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
126 |
-
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
-
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
-
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
-
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
-
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
-
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
-
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
-
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
134 |
-
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
135 |
-
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
-
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
-
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
-
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
139 |
-
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
-
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
-
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
-
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
-
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
144 |
-
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
-
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
-
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
-
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
148 |
-
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
-
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
-
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
-
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
-
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
153 |
-
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
-
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
-
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
-
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
157 |
-
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
-
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
-
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
-
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
-
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
-
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
-
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
-
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
-
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
-
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
-
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
-
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
-
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
-
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
171 |
-
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
-
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
-
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
-
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
175 |
-
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
-
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
-
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
-
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
-
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
-
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
-
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
-
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
-
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
-
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
-
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
-
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
-
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
-
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
-
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
-
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
-
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
-
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
-
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
-
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
-
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
-
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
-
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
-
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
-
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
-
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
-
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
-
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
-
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
-
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
-
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
-
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
-
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
-
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
-
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
-
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
-
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
-
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
-
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
-
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
-
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
-
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
-
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
-
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
-
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
-
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
-
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
-
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
-
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
-
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
234 |
-
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
235 |
-
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
236 |
-
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
237 |
-
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
238 |
-
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
-
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
-
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
-
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
243 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
247 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
252 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
256 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
257 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
266 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
270 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
274 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
-
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
279 |
-
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
280 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
-
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
282 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
283 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
-
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
288 |
-
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
289 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
-
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
291 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
292 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
294 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
296 |
-
"model.norm.weight": "model-00004-of-00004.safetensors"
|
297 |
-
}
|
298 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/scheduler.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:221573bbf1e61e0e10471110193fe4694325b81f75b5d314e4907267fa4db199
|
3 |
-
size 1064
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/special_tokens_map.json
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
"<|none1|>"
|
4 |
-
],
|
5 |
-
"bos_token": {
|
6 |
-
"content": "<|begin_of_text|>",
|
7 |
-
"lstrip": false,
|
8 |
-
"normalized": false,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false
|
11 |
-
},
|
12 |
-
"eos_token": {
|
13 |
-
"content": "<|end_of_text|>",
|
14 |
-
"lstrip": false,
|
15 |
-
"normalized": false,
|
16 |
-
"rstrip": false,
|
17 |
-
"single_word": false
|
18 |
-
},
|
19 |
-
"pad_token": {
|
20 |
-
"content": "<|end_of_text|>",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false
|
25 |
-
}
|
26 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/tokenizer.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/tokenizer_config.json
DELETED
@@ -1,2076 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"128000": {
|
4 |
-
"content": "<|begin_of_text|>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"128001": {
|
12 |
-
"content": "<|end_of_text|>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"128002": {
|
20 |
-
"content": "<|reserved_special_token_0|>",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"128003": {
|
28 |
-
"content": "<|reserved_special_token_1|>",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"128004": {
|
36 |
-
"content": "<|reserved_special_token_2|>",
|
37 |
-
"lstrip": false,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
},
|
43 |
-
"128005": {
|
44 |
-
"content": "<|reserved_special_token_3|>",
|
45 |
-
"lstrip": false,
|
46 |
-
"normalized": false,
|
47 |
-
"rstrip": false,
|
48 |
-
"single_word": false,
|
49 |
-
"special": true
|
50 |
-
},
|
51 |
-
"128006": {
|
52 |
-
"content": "<|start_header_id|>",
|
53 |
-
"lstrip": false,
|
54 |
-
"normalized": false,
|
55 |
-
"rstrip": false,
|
56 |
-
"single_word": false,
|
57 |
-
"special": true
|
58 |
-
},
|
59 |
-
"128007": {
|
60 |
-
"content": "<|end_header_id|>",
|
61 |
-
"lstrip": false,
|
62 |
-
"normalized": false,
|
63 |
-
"rstrip": false,
|
64 |
-
"single_word": false,
|
65 |
-
"special": true
|
66 |
-
},
|
67 |
-
"128008": {
|
68 |
-
"content": "<|reserved_special_token_4|>",
|
69 |
-
"lstrip": false,
|
70 |
-
"normalized": false,
|
71 |
-
"rstrip": false,
|
72 |
-
"single_word": false,
|
73 |
-
"special": true
|
74 |
-
},
|
75 |
-
"128009": {
|
76 |
-
"content": "<|eot_id|>",
|
77 |
-
"lstrip": false,
|
78 |
-
"normalized": false,
|
79 |
-
"rstrip": false,
|
80 |
-
"single_word": false,
|
81 |
-
"special": true
|
82 |
-
},
|
83 |
-
"128010": {
|
84 |
-
"content": "<|reserved_special_token_5|>",
|
85 |
-
"lstrip": false,
|
86 |
-
"normalized": false,
|
87 |
-
"rstrip": false,
|
88 |
-
"single_word": false,
|
89 |
-
"special": true
|
90 |
-
},
|
91 |
-
"128011": {
|
92 |
-
"content": "<|reserved_special_token_6|>",
|
93 |
-
"lstrip": false,
|
94 |
-
"normalized": false,
|
95 |
-
"rstrip": false,
|
96 |
-
"single_word": false,
|
97 |
-
"special": true
|
98 |
-
},
|
99 |
-
"128012": {
|
100 |
-
"content": "<|reserved_special_token_7|>",
|
101 |
-
"lstrip": false,
|
102 |
-
"normalized": false,
|
103 |
-
"rstrip": false,
|
104 |
-
"single_word": false,
|
105 |
-
"special": true
|
106 |
-
},
|
107 |
-
"128013": {
|
108 |
-
"content": "<|reserved_special_token_8|>",
|
109 |
-
"lstrip": false,
|
110 |
-
"normalized": false,
|
111 |
-
"rstrip": false,
|
112 |
-
"single_word": false,
|
113 |
-
"special": true
|
114 |
-
},
|
115 |
-
"128014": {
|
116 |
-
"content": "<|reserved_special_token_9|>",
|
117 |
-
"lstrip": false,
|
118 |
-
"normalized": false,
|
119 |
-
"rstrip": false,
|
120 |
-
"single_word": false,
|
121 |
-
"special": true
|
122 |
-
},
|
123 |
-
"128015": {
|
124 |
-
"content": "<|reserved_special_token_10|>",
|
125 |
-
"lstrip": false,
|
126 |
-
"normalized": false,
|
127 |
-
"rstrip": false,
|
128 |
-
"single_word": false,
|
129 |
-
"special": true
|
130 |
-
},
|
131 |
-
"128016": {
|
132 |
-
"content": "<|reserved_special_token_11|>",
|
133 |
-
"lstrip": false,
|
134 |
-
"normalized": false,
|
135 |
-
"rstrip": false,
|
136 |
-
"single_word": false,
|
137 |
-
"special": true
|
138 |
-
},
|
139 |
-
"128017": {
|
140 |
-
"content": "<|reserved_special_token_12|>",
|
141 |
-
"lstrip": false,
|
142 |
-
"normalized": false,
|
143 |
-
"rstrip": false,
|
144 |
-
"single_word": false,
|
145 |
-
"special": true
|
146 |
-
},
|
147 |
-
"128018": {
|
148 |
-
"content": "<|reserved_special_token_13|>",
|
149 |
-
"lstrip": false,
|
150 |
-
"normalized": false,
|
151 |
-
"rstrip": false,
|
152 |
-
"single_word": false,
|
153 |
-
"special": true
|
154 |
-
},
|
155 |
-
"128019": {
|
156 |
-
"content": "<|reserved_special_token_14|>",
|
157 |
-
"lstrip": false,
|
158 |
-
"normalized": false,
|
159 |
-
"rstrip": false,
|
160 |
-
"single_word": false,
|
161 |
-
"special": true
|
162 |
-
},
|
163 |
-
"128020": {
|
164 |
-
"content": "<|reserved_special_token_15|>",
|
165 |
-
"lstrip": false,
|
166 |
-
"normalized": false,
|
167 |
-
"rstrip": false,
|
168 |
-
"single_word": false,
|
169 |
-
"special": true
|
170 |
-
},
|
171 |
-
"128021": {
|
172 |
-
"content": "<|reserved_special_token_16|>",
|
173 |
-
"lstrip": false,
|
174 |
-
"normalized": false,
|
175 |
-
"rstrip": false,
|
176 |
-
"single_word": false,
|
177 |
-
"special": true
|
178 |
-
},
|
179 |
-
"128022": {
|
180 |
-
"content": "<|reserved_special_token_17|>",
|
181 |
-
"lstrip": false,
|
182 |
-
"normalized": false,
|
183 |
-
"rstrip": false,
|
184 |
-
"single_word": false,
|
185 |
-
"special": true
|
186 |
-
},
|
187 |
-
"128023": {
|
188 |
-
"content": "<|reserved_special_token_18|>",
|
189 |
-
"lstrip": false,
|
190 |
-
"normalized": false,
|
191 |
-
"rstrip": false,
|
192 |
-
"single_word": false,
|
193 |
-
"special": true
|
194 |
-
},
|
195 |
-
"128024": {
|
196 |
-
"content": "<|reserved_special_token_19|>",
|
197 |
-
"lstrip": false,
|
198 |
-
"normalized": false,
|
199 |
-
"rstrip": false,
|
200 |
-
"single_word": false,
|
201 |
-
"special": true
|
202 |
-
},
|
203 |
-
"128025": {
|
204 |
-
"content": "<|reserved_special_token_20|>",
|
205 |
-
"lstrip": false,
|
206 |
-
"normalized": false,
|
207 |
-
"rstrip": false,
|
208 |
-
"single_word": false,
|
209 |
-
"special": true
|
210 |
-
},
|
211 |
-
"128026": {
|
212 |
-
"content": "<|reserved_special_token_21|>",
|
213 |
-
"lstrip": false,
|
214 |
-
"normalized": false,
|
215 |
-
"rstrip": false,
|
216 |
-
"single_word": false,
|
217 |
-
"special": true
|
218 |
-
},
|
219 |
-
"128027": {
|
220 |
-
"content": "<|reserved_special_token_22|>",
|
221 |
-
"lstrip": false,
|
222 |
-
"normalized": false,
|
223 |
-
"rstrip": false,
|
224 |
-
"single_word": false,
|
225 |
-
"special": true
|
226 |
-
},
|
227 |
-
"128028": {
|
228 |
-
"content": "<|reserved_special_token_23|>",
|
229 |
-
"lstrip": false,
|
230 |
-
"normalized": false,
|
231 |
-
"rstrip": false,
|
232 |
-
"single_word": false,
|
233 |
-
"special": true
|
234 |
-
},
|
235 |
-
"128029": {
|
236 |
-
"content": "<|reserved_special_token_24|>",
|
237 |
-
"lstrip": false,
|
238 |
-
"normalized": false,
|
239 |
-
"rstrip": false,
|
240 |
-
"single_word": false,
|
241 |
-
"special": true
|
242 |
-
},
|
243 |
-
"128030": {
|
244 |
-
"content": "<|reserved_special_token_25|>",
|
245 |
-
"lstrip": false,
|
246 |
-
"normalized": false,
|
247 |
-
"rstrip": false,
|
248 |
-
"single_word": false,
|
249 |
-
"special": true
|
250 |
-
},
|
251 |
-
"128031": {
|
252 |
-
"content": "<|reserved_special_token_26|>",
|
253 |
-
"lstrip": false,
|
254 |
-
"normalized": false,
|
255 |
-
"rstrip": false,
|
256 |
-
"single_word": false,
|
257 |
-
"special": true
|
258 |
-
},
|
259 |
-
"128032": {
|
260 |
-
"content": "<|reserved_special_token_27|>",
|
261 |
-
"lstrip": false,
|
262 |
-
"normalized": false,
|
263 |
-
"rstrip": false,
|
264 |
-
"single_word": false,
|
265 |
-
"special": true
|
266 |
-
},
|
267 |
-
"128033": {
|
268 |
-
"content": "<|reserved_special_token_28|>",
|
269 |
-
"lstrip": false,
|
270 |
-
"normalized": false,
|
271 |
-
"rstrip": false,
|
272 |
-
"single_word": false,
|
273 |
-
"special": true
|
274 |
-
},
|
275 |
-
"128034": {
|
276 |
-
"content": "<|reserved_special_token_29|>",
|
277 |
-
"lstrip": false,
|
278 |
-
"normalized": false,
|
279 |
-
"rstrip": false,
|
280 |
-
"single_word": false,
|
281 |
-
"special": true
|
282 |
-
},
|
283 |
-
"128035": {
|
284 |
-
"content": "<|reserved_special_token_30|>",
|
285 |
-
"lstrip": false,
|
286 |
-
"normalized": false,
|
287 |
-
"rstrip": false,
|
288 |
-
"single_word": false,
|
289 |
-
"special": true
|
290 |
-
},
|
291 |
-
"128036": {
|
292 |
-
"content": "<|reserved_special_token_31|>",
|
293 |
-
"lstrip": false,
|
294 |
-
"normalized": false,
|
295 |
-
"rstrip": false,
|
296 |
-
"single_word": false,
|
297 |
-
"special": true
|
298 |
-
},
|
299 |
-
"128037": {
|
300 |
-
"content": "<|reserved_special_token_32|>",
|
301 |
-
"lstrip": false,
|
302 |
-
"normalized": false,
|
303 |
-
"rstrip": false,
|
304 |
-
"single_word": false,
|
305 |
-
"special": true
|
306 |
-
},
|
307 |
-
"128038": {
|
308 |
-
"content": "<|reserved_special_token_33|>",
|
309 |
-
"lstrip": false,
|
310 |
-
"normalized": false,
|
311 |
-
"rstrip": false,
|
312 |
-
"single_word": false,
|
313 |
-
"special": true
|
314 |
-
},
|
315 |
-
"128039": {
|
316 |
-
"content": "<|reserved_special_token_34|>",
|
317 |
-
"lstrip": false,
|
318 |
-
"normalized": false,
|
319 |
-
"rstrip": false,
|
320 |
-
"single_word": false,
|
321 |
-
"special": true
|
322 |
-
},
|
323 |
-
"128040": {
|
324 |
-
"content": "<|reserved_special_token_35|>",
|
325 |
-
"lstrip": false,
|
326 |
-
"normalized": false,
|
327 |
-
"rstrip": false,
|
328 |
-
"single_word": false,
|
329 |
-
"special": true
|
330 |
-
},
|
331 |
-
"128041": {
|
332 |
-
"content": "<|reserved_special_token_36|>",
|
333 |
-
"lstrip": false,
|
334 |
-
"normalized": false,
|
335 |
-
"rstrip": false,
|
336 |
-
"single_word": false,
|
337 |
-
"special": true
|
338 |
-
},
|
339 |
-
"128042": {
|
340 |
-
"content": "<|reserved_special_token_37|>",
|
341 |
-
"lstrip": false,
|
342 |
-
"normalized": false,
|
343 |
-
"rstrip": false,
|
344 |
-
"single_word": false,
|
345 |
-
"special": true
|
346 |
-
},
|
347 |
-
"128043": {
|
348 |
-
"content": "<|reserved_special_token_38|>",
|
349 |
-
"lstrip": false,
|
350 |
-
"normalized": false,
|
351 |
-
"rstrip": false,
|
352 |
-
"single_word": false,
|
353 |
-
"special": true
|
354 |
-
},
|
355 |
-
"128044": {
|
356 |
-
"content": "<|reserved_special_token_39|>",
|
357 |
-
"lstrip": false,
|
358 |
-
"normalized": false,
|
359 |
-
"rstrip": false,
|
360 |
-
"single_word": false,
|
361 |
-
"special": true
|
362 |
-
},
|
363 |
-
"128045": {
|
364 |
-
"content": "<|reserved_special_token_40|>",
|
365 |
-
"lstrip": false,
|
366 |
-
"normalized": false,
|
367 |
-
"rstrip": false,
|
368 |
-
"single_word": false,
|
369 |
-
"special": true
|
370 |
-
},
|
371 |
-
"128046": {
|
372 |
-
"content": "<|reserved_special_token_41|>",
|
373 |
-
"lstrip": false,
|
374 |
-
"normalized": false,
|
375 |
-
"rstrip": false,
|
376 |
-
"single_word": false,
|
377 |
-
"special": true
|
378 |
-
},
|
379 |
-
"128047": {
|
380 |
-
"content": "<|reserved_special_token_42|>",
|
381 |
-
"lstrip": false,
|
382 |
-
"normalized": false,
|
383 |
-
"rstrip": false,
|
384 |
-
"single_word": false,
|
385 |
-
"special": true
|
386 |
-
},
|
387 |
-
"128048": {
|
388 |
-
"content": "<|reserved_special_token_43|>",
|
389 |
-
"lstrip": false,
|
390 |
-
"normalized": false,
|
391 |
-
"rstrip": false,
|
392 |
-
"single_word": false,
|
393 |
-
"special": true
|
394 |
-
},
|
395 |
-
"128049": {
|
396 |
-
"content": "<|reserved_special_token_44|>",
|
397 |
-
"lstrip": false,
|
398 |
-
"normalized": false,
|
399 |
-
"rstrip": false,
|
400 |
-
"single_word": false,
|
401 |
-
"special": true
|
402 |
-
},
|
403 |
-
"128050": {
|
404 |
-
"content": "<|reserved_special_token_45|>",
|
405 |
-
"lstrip": false,
|
406 |
-
"normalized": false,
|
407 |
-
"rstrip": false,
|
408 |
-
"single_word": false,
|
409 |
-
"special": true
|
410 |
-
},
|
411 |
-
"128051": {
|
412 |
-
"content": "<|reserved_special_token_46|>",
|
413 |
-
"lstrip": false,
|
414 |
-
"normalized": false,
|
415 |
-
"rstrip": false,
|
416 |
-
"single_word": false,
|
417 |
-
"special": true
|
418 |
-
},
|
419 |
-
"128052": {
|
420 |
-
"content": "<|reserved_special_token_47|>",
|
421 |
-
"lstrip": false,
|
422 |
-
"normalized": false,
|
423 |
-
"rstrip": false,
|
424 |
-
"single_word": false,
|
425 |
-
"special": true
|
426 |
-
},
|
427 |
-
"128053": {
|
428 |
-
"content": "<|reserved_special_token_48|>",
|
429 |
-
"lstrip": false,
|
430 |
-
"normalized": false,
|
431 |
-
"rstrip": false,
|
432 |
-
"single_word": false,
|
433 |
-
"special": true
|
434 |
-
},
|
435 |
-
"128054": {
|
436 |
-
"content": "<|reserved_special_token_49|>",
|
437 |
-
"lstrip": false,
|
438 |
-
"normalized": false,
|
439 |
-
"rstrip": false,
|
440 |
-
"single_word": false,
|
441 |
-
"special": true
|
442 |
-
},
|
443 |
-
"128055": {
|
444 |
-
"content": "<|reserved_special_token_50|>",
|
445 |
-
"lstrip": false,
|
446 |
-
"normalized": false,
|
447 |
-
"rstrip": false,
|
448 |
-
"single_word": false,
|
449 |
-
"special": true
|
450 |
-
},
|
451 |
-
"128056": {
|
452 |
-
"content": "<|reserved_special_token_51|>",
|
453 |
-
"lstrip": false,
|
454 |
-
"normalized": false,
|
455 |
-
"rstrip": false,
|
456 |
-
"single_word": false,
|
457 |
-
"special": true
|
458 |
-
},
|
459 |
-
"128057": {
|
460 |
-
"content": "<|reserved_special_token_52|>",
|
461 |
-
"lstrip": false,
|
462 |
-
"normalized": false,
|
463 |
-
"rstrip": false,
|
464 |
-
"single_word": false,
|
465 |
-
"special": true
|
466 |
-
},
|
467 |
-
"128058": {
|
468 |
-
"content": "<|reserved_special_token_53|>",
|
469 |
-
"lstrip": false,
|
470 |
-
"normalized": false,
|
471 |
-
"rstrip": false,
|
472 |
-
"single_word": false,
|
473 |
-
"special": true
|
474 |
-
},
|
475 |
-
"128059": {
|
476 |
-
"content": "<|reserved_special_token_54|>",
|
477 |
-
"lstrip": false,
|
478 |
-
"normalized": false,
|
479 |
-
"rstrip": false,
|
480 |
-
"single_word": false,
|
481 |
-
"special": true
|
482 |
-
},
|
483 |
-
"128060": {
|
484 |
-
"content": "<|reserved_special_token_55|>",
|
485 |
-
"lstrip": false,
|
486 |
-
"normalized": false,
|
487 |
-
"rstrip": false,
|
488 |
-
"single_word": false,
|
489 |
-
"special": true
|
490 |
-
},
|
491 |
-
"128061": {
|
492 |
-
"content": "<|reserved_special_token_56|>",
|
493 |
-
"lstrip": false,
|
494 |
-
"normalized": false,
|
495 |
-
"rstrip": false,
|
496 |
-
"single_word": false,
|
497 |
-
"special": true
|
498 |
-
},
|
499 |
-
"128062": {
|
500 |
-
"content": "<|reserved_special_token_57|>",
|
501 |
-
"lstrip": false,
|
502 |
-
"normalized": false,
|
503 |
-
"rstrip": false,
|
504 |
-
"single_word": false,
|
505 |
-
"special": true
|
506 |
-
},
|
507 |
-
"128063": {
|
508 |
-
"content": "<|reserved_special_token_58|>",
|
509 |
-
"lstrip": false,
|
510 |
-
"normalized": false,
|
511 |
-
"rstrip": false,
|
512 |
-
"single_word": false,
|
513 |
-
"special": true
|
514 |
-
},
|
515 |
-
"128064": {
|
516 |
-
"content": "<|reserved_special_token_59|>",
|
517 |
-
"lstrip": false,
|
518 |
-
"normalized": false,
|
519 |
-
"rstrip": false,
|
520 |
-
"single_word": false,
|
521 |
-
"special": true
|
522 |
-
},
|
523 |
-
"128065": {
|
524 |
-
"content": "<|reserved_special_token_60|>",
|
525 |
-
"lstrip": false,
|
526 |
-
"normalized": false,
|
527 |
-
"rstrip": false,
|
528 |
-
"single_word": false,
|
529 |
-
"special": true
|
530 |
-
},
|
531 |
-
"128066": {
|
532 |
-
"content": "<|reserved_special_token_61|>",
|
533 |
-
"lstrip": false,
|
534 |
-
"normalized": false,
|
535 |
-
"rstrip": false,
|
536 |
-
"single_word": false,
|
537 |
-
"special": true
|
538 |
-
},
|
539 |
-
"128067": {
|
540 |
-
"content": "<|reserved_special_token_62|>",
|
541 |
-
"lstrip": false,
|
542 |
-
"normalized": false,
|
543 |
-
"rstrip": false,
|
544 |
-
"single_word": false,
|
545 |
-
"special": true
|
546 |
-
},
|
547 |
-
"128068": {
|
548 |
-
"content": "<|reserved_special_token_63|>",
|
549 |
-
"lstrip": false,
|
550 |
-
"normalized": false,
|
551 |
-
"rstrip": false,
|
552 |
-
"single_word": false,
|
553 |
-
"special": true
|
554 |
-
},
|
555 |
-
"128069": {
|
556 |
-
"content": "<|reserved_special_token_64|>",
|
557 |
-
"lstrip": false,
|
558 |
-
"normalized": false,
|
559 |
-
"rstrip": false,
|
560 |
-
"single_word": false,
|
561 |
-
"special": true
|
562 |
-
},
|
563 |
-
"128070": {
|
564 |
-
"content": "<|reserved_special_token_65|>",
|
565 |
-
"lstrip": false,
|
566 |
-
"normalized": false,
|
567 |
-
"rstrip": false,
|
568 |
-
"single_word": false,
|
569 |
-
"special": true
|
570 |
-
},
|
571 |
-
"128071": {
|
572 |
-
"content": "<|reserved_special_token_66|>",
|
573 |
-
"lstrip": false,
|
574 |
-
"normalized": false,
|
575 |
-
"rstrip": false,
|
576 |
-
"single_word": false,
|
577 |
-
"special": true
|
578 |
-
},
|
579 |
-
"128072": {
|
580 |
-
"content": "<|reserved_special_token_67|>",
|
581 |
-
"lstrip": false,
|
582 |
-
"normalized": false,
|
583 |
-
"rstrip": false,
|
584 |
-
"single_word": false,
|
585 |
-
"special": true
|
586 |
-
},
|
587 |
-
"128073": {
|
588 |
-
"content": "<|reserved_special_token_68|>",
|
589 |
-
"lstrip": false,
|
590 |
-
"normalized": false,
|
591 |
-
"rstrip": false,
|
592 |
-
"single_word": false,
|
593 |
-
"special": true
|
594 |
-
},
|
595 |
-
"128074": {
|
596 |
-
"content": "<|reserved_special_token_69|>",
|
597 |
-
"lstrip": false,
|
598 |
-
"normalized": false,
|
599 |
-
"rstrip": false,
|
600 |
-
"single_word": false,
|
601 |
-
"special": true
|
602 |
-
},
|
603 |
-
"128075": {
|
604 |
-
"content": "<|reserved_special_token_70|>",
|
605 |
-
"lstrip": false,
|
606 |
-
"normalized": false,
|
607 |
-
"rstrip": false,
|
608 |
-
"single_word": false,
|
609 |
-
"special": true
|
610 |
-
},
|
611 |
-
"128076": {
|
612 |
-
"content": "<|reserved_special_token_71|>",
|
613 |
-
"lstrip": false,
|
614 |
-
"normalized": false,
|
615 |
-
"rstrip": false,
|
616 |
-
"single_word": false,
|
617 |
-
"special": true
|
618 |
-
},
|
619 |
-
"128077": {
|
620 |
-
"content": "<|reserved_special_token_72|>",
|
621 |
-
"lstrip": false,
|
622 |
-
"normalized": false,
|
623 |
-
"rstrip": false,
|
624 |
-
"single_word": false,
|
625 |
-
"special": true
|
626 |
-
},
|
627 |
-
"128078": {
|
628 |
-
"content": "<|reserved_special_token_73|>",
|
629 |
-
"lstrip": false,
|
630 |
-
"normalized": false,
|
631 |
-
"rstrip": false,
|
632 |
-
"single_word": false,
|
633 |
-
"special": true
|
634 |
-
},
|
635 |
-
"128079": {
|
636 |
-
"content": "<|reserved_special_token_74|>",
|
637 |
-
"lstrip": false,
|
638 |
-
"normalized": false,
|
639 |
-
"rstrip": false,
|
640 |
-
"single_word": false,
|
641 |
-
"special": true
|
642 |
-
},
|
643 |
-
"128080": {
|
644 |
-
"content": "<|reserved_special_token_75|>",
|
645 |
-
"lstrip": false,
|
646 |
-
"normalized": false,
|
647 |
-
"rstrip": false,
|
648 |
-
"single_word": false,
|
649 |
-
"special": true
|
650 |
-
},
|
651 |
-
"128081": {
|
652 |
-
"content": "<|reserved_special_token_76|>",
|
653 |
-
"lstrip": false,
|
654 |
-
"normalized": false,
|
655 |
-
"rstrip": false,
|
656 |
-
"single_word": false,
|
657 |
-
"special": true
|
658 |
-
},
|
659 |
-
"128082": {
|
660 |
-
"content": "<|reserved_special_token_77|>",
|
661 |
-
"lstrip": false,
|
662 |
-
"normalized": false,
|
663 |
-
"rstrip": false,
|
664 |
-
"single_word": false,
|
665 |
-
"special": true
|
666 |
-
},
|
667 |
-
"128083": {
|
668 |
-
"content": "<|reserved_special_token_78|>",
|
669 |
-
"lstrip": false,
|
670 |
-
"normalized": false,
|
671 |
-
"rstrip": false,
|
672 |
-
"single_word": false,
|
673 |
-
"special": true
|
674 |
-
},
|
675 |
-
"128084": {
|
676 |
-
"content": "<|reserved_special_token_79|>",
|
677 |
-
"lstrip": false,
|
678 |
-
"normalized": false,
|
679 |
-
"rstrip": false,
|
680 |
-
"single_word": false,
|
681 |
-
"special": true
|
682 |
-
},
|
683 |
-
"128085": {
|
684 |
-
"content": "<|reserved_special_token_80|>",
|
685 |
-
"lstrip": false,
|
686 |
-
"normalized": false,
|
687 |
-
"rstrip": false,
|
688 |
-
"single_word": false,
|
689 |
-
"special": true
|
690 |
-
},
|
691 |
-
"128086": {
|
692 |
-
"content": "<|reserved_special_token_81|>",
|
693 |
-
"lstrip": false,
|
694 |
-
"normalized": false,
|
695 |
-
"rstrip": false,
|
696 |
-
"single_word": false,
|
697 |
-
"special": true
|
698 |
-
},
|
699 |
-
"128087": {
|
700 |
-
"content": "<|reserved_special_token_82|>",
|
701 |
-
"lstrip": false,
|
702 |
-
"normalized": false,
|
703 |
-
"rstrip": false,
|
704 |
-
"single_word": false,
|
705 |
-
"special": true
|
706 |
-
},
|
707 |
-
"128088": {
|
708 |
-
"content": "<|reserved_special_token_83|>",
|
709 |
-
"lstrip": false,
|
710 |
-
"normalized": false,
|
711 |
-
"rstrip": false,
|
712 |
-
"single_word": false,
|
713 |
-
"special": true
|
714 |
-
},
|
715 |
-
"128089": {
|
716 |
-
"content": "<|reserved_special_token_84|>",
|
717 |
-
"lstrip": false,
|
718 |
-
"normalized": false,
|
719 |
-
"rstrip": false,
|
720 |
-
"single_word": false,
|
721 |
-
"special": true
|
722 |
-
},
|
723 |
-
"128090": {
|
724 |
-
"content": "<|reserved_special_token_85|>",
|
725 |
-
"lstrip": false,
|
726 |
-
"normalized": false,
|
727 |
-
"rstrip": false,
|
728 |
-
"single_word": false,
|
729 |
-
"special": true
|
730 |
-
},
|
731 |
-
"128091": {
|
732 |
-
"content": "<|reserved_special_token_86|>",
|
733 |
-
"lstrip": false,
|
734 |
-
"normalized": false,
|
735 |
-
"rstrip": false,
|
736 |
-
"single_word": false,
|
737 |
-
"special": true
|
738 |
-
},
|
739 |
-
"128092": {
|
740 |
-
"content": "<|reserved_special_token_87|>",
|
741 |
-
"lstrip": false,
|
742 |
-
"normalized": false,
|
743 |
-
"rstrip": false,
|
744 |
-
"single_word": false,
|
745 |
-
"special": true
|
746 |
-
},
|
747 |
-
"128093": {
|
748 |
-
"content": "<|reserved_special_token_88|>",
|
749 |
-
"lstrip": false,
|
750 |
-
"normalized": false,
|
751 |
-
"rstrip": false,
|
752 |
-
"single_word": false,
|
753 |
-
"special": true
|
754 |
-
},
|
755 |
-
"128094": {
|
756 |
-
"content": "<|reserved_special_token_89|>",
|
757 |
-
"lstrip": false,
|
758 |
-
"normalized": false,
|
759 |
-
"rstrip": false,
|
760 |
-
"single_word": false,
|
761 |
-
"special": true
|
762 |
-
},
|
763 |
-
"128095": {
|
764 |
-
"content": "<|reserved_special_token_90|>",
|
765 |
-
"lstrip": false,
|
766 |
-
"normalized": false,
|
767 |
-
"rstrip": false,
|
768 |
-
"single_word": false,
|
769 |
-
"special": true
|
770 |
-
},
|
771 |
-
"128096": {
|
772 |
-
"content": "<|reserved_special_token_91|>",
|
773 |
-
"lstrip": false,
|
774 |
-
"normalized": false,
|
775 |
-
"rstrip": false,
|
776 |
-
"single_word": false,
|
777 |
-
"special": true
|
778 |
-
},
|
779 |
-
"128097": {
|
780 |
-
"content": "<|reserved_special_token_92|>",
|
781 |
-
"lstrip": false,
|
782 |
-
"normalized": false,
|
783 |
-
"rstrip": false,
|
784 |
-
"single_word": false,
|
785 |
-
"special": true
|
786 |
-
},
|
787 |
-
"128098": {
|
788 |
-
"content": "<|reserved_special_token_93|>",
|
789 |
-
"lstrip": false,
|
790 |
-
"normalized": false,
|
791 |
-
"rstrip": false,
|
792 |
-
"single_word": false,
|
793 |
-
"special": true
|
794 |
-
},
|
795 |
-
"128099": {
|
796 |
-
"content": "<|reserved_special_token_94|>",
|
797 |
-
"lstrip": false,
|
798 |
-
"normalized": false,
|
799 |
-
"rstrip": false,
|
800 |
-
"single_word": false,
|
801 |
-
"special": true
|
802 |
-
},
|
803 |
-
"128100": {
|
804 |
-
"content": "<|reserved_special_token_95|>",
|
805 |
-
"lstrip": false,
|
806 |
-
"normalized": false,
|
807 |
-
"rstrip": false,
|
808 |
-
"single_word": false,
|
809 |
-
"special": true
|
810 |
-
},
|
811 |
-
"128101": {
|
812 |
-
"content": "<|reserved_special_token_96|>",
|
813 |
-
"lstrip": false,
|
814 |
-
"normalized": false,
|
815 |
-
"rstrip": false,
|
816 |
-
"single_word": false,
|
817 |
-
"special": true
|
818 |
-
},
|
819 |
-
"128102": {
|
820 |
-
"content": "<|reserved_special_token_97|>",
|
821 |
-
"lstrip": false,
|
822 |
-
"normalized": false,
|
823 |
-
"rstrip": false,
|
824 |
-
"single_word": false,
|
825 |
-
"special": true
|
826 |
-
},
|
827 |
-
"128103": {
|
828 |
-
"content": "<|reserved_special_token_98|>",
|
829 |
-
"lstrip": false,
|
830 |
-
"normalized": false,
|
831 |
-
"rstrip": false,
|
832 |
-
"single_word": false,
|
833 |
-
"special": true
|
834 |
-
},
|
835 |
-
"128104": {
|
836 |
-
"content": "<|reserved_special_token_99|>",
|
837 |
-
"lstrip": false,
|
838 |
-
"normalized": false,
|
839 |
-
"rstrip": false,
|
840 |
-
"single_word": false,
|
841 |
-
"special": true
|
842 |
-
},
|
843 |
-
"128105": {
|
844 |
-
"content": "<|reserved_special_token_100|>",
|
845 |
-
"lstrip": false,
|
846 |
-
"normalized": false,
|
847 |
-
"rstrip": false,
|
848 |
-
"single_word": false,
|
849 |
-
"special": true
|
850 |
-
},
|
851 |
-
"128106": {
|
852 |
-
"content": "<|reserved_special_token_101|>",
|
853 |
-
"lstrip": false,
|
854 |
-
"normalized": false,
|
855 |
-
"rstrip": false,
|
856 |
-
"single_word": false,
|
857 |
-
"special": true
|
858 |
-
},
|
859 |
-
"128107": {
|
860 |
-
"content": "<|reserved_special_token_102|>",
|
861 |
-
"lstrip": false,
|
862 |
-
"normalized": false,
|
863 |
-
"rstrip": false,
|
864 |
-
"single_word": false,
|
865 |
-
"special": true
|
866 |
-
},
|
867 |
-
"128108": {
|
868 |
-
"content": "<|reserved_special_token_103|>",
|
869 |
-
"lstrip": false,
|
870 |
-
"normalized": false,
|
871 |
-
"rstrip": false,
|
872 |
-
"single_word": false,
|
873 |
-
"special": true
|
874 |
-
},
|
875 |
-
"128109": {
|
876 |
-
"content": "<|reserved_special_token_104|>",
|
877 |
-
"lstrip": false,
|
878 |
-
"normalized": false,
|
879 |
-
"rstrip": false,
|
880 |
-
"single_word": false,
|
881 |
-
"special": true
|
882 |
-
},
|
883 |
-
"128110": {
|
884 |
-
"content": "<|reserved_special_token_105|>",
|
885 |
-
"lstrip": false,
|
886 |
-
"normalized": false,
|
887 |
-
"rstrip": false,
|
888 |
-
"single_word": false,
|
889 |
-
"special": true
|
890 |
-
},
|
891 |
-
"128111": {
|
892 |
-
"content": "<|reserved_special_token_106|>",
|
893 |
-
"lstrip": false,
|
894 |
-
"normalized": false,
|
895 |
-
"rstrip": false,
|
896 |
-
"single_word": false,
|
897 |
-
"special": true
|
898 |
-
},
|
899 |
-
"128112": {
|
900 |
-
"content": "<|reserved_special_token_107|>",
|
901 |
-
"lstrip": false,
|
902 |
-
"normalized": false,
|
903 |
-
"rstrip": false,
|
904 |
-
"single_word": false,
|
905 |
-
"special": true
|
906 |
-
},
|
907 |
-
"128113": {
|
908 |
-
"content": "<|reserved_special_token_108|>",
|
909 |
-
"lstrip": false,
|
910 |
-
"normalized": false,
|
911 |
-
"rstrip": false,
|
912 |
-
"single_word": false,
|
913 |
-
"special": true
|
914 |
-
},
|
915 |
-
"128114": {
|
916 |
-
"content": "<|reserved_special_token_109|>",
|
917 |
-
"lstrip": false,
|
918 |
-
"normalized": false,
|
919 |
-
"rstrip": false,
|
920 |
-
"single_word": false,
|
921 |
-
"special": true
|
922 |
-
},
|
923 |
-
"128115": {
|
924 |
-
"content": "<|reserved_special_token_110|>",
|
925 |
-
"lstrip": false,
|
926 |
-
"normalized": false,
|
927 |
-
"rstrip": false,
|
928 |
-
"single_word": false,
|
929 |
-
"special": true
|
930 |
-
},
|
931 |
-
"128116": {
|
932 |
-
"content": "<|reserved_special_token_111|>",
|
933 |
-
"lstrip": false,
|
934 |
-
"normalized": false,
|
935 |
-
"rstrip": false,
|
936 |
-
"single_word": false,
|
937 |
-
"special": true
|
938 |
-
},
|
939 |
-
"128117": {
|
940 |
-
"content": "<|reserved_special_token_112|>",
|
941 |
-
"lstrip": false,
|
942 |
-
"normalized": false,
|
943 |
-
"rstrip": false,
|
944 |
-
"single_word": false,
|
945 |
-
"special": true
|
946 |
-
},
|
947 |
-
"128118": {
|
948 |
-
"content": "<|reserved_special_token_113|>",
|
949 |
-
"lstrip": false,
|
950 |
-
"normalized": false,
|
951 |
-
"rstrip": false,
|
952 |
-
"single_word": false,
|
953 |
-
"special": true
|
954 |
-
},
|
955 |
-
"128119": {
|
956 |
-
"content": "<|reserved_special_token_114|>",
|
957 |
-
"lstrip": false,
|
958 |
-
"normalized": false,
|
959 |
-
"rstrip": false,
|
960 |
-
"single_word": false,
|
961 |
-
"special": true
|
962 |
-
},
|
963 |
-
"128120": {
|
964 |
-
"content": "<|reserved_special_token_115|>",
|
965 |
-
"lstrip": false,
|
966 |
-
"normalized": false,
|
967 |
-
"rstrip": false,
|
968 |
-
"single_word": false,
|
969 |
-
"special": true
|
970 |
-
},
|
971 |
-
"128121": {
|
972 |
-
"content": "<|reserved_special_token_116|>",
|
973 |
-
"lstrip": false,
|
974 |
-
"normalized": false,
|
975 |
-
"rstrip": false,
|
976 |
-
"single_word": false,
|
977 |
-
"special": true
|
978 |
-
},
|
979 |
-
"128122": {
|
980 |
-
"content": "<|reserved_special_token_117|>",
|
981 |
-
"lstrip": false,
|
982 |
-
"normalized": false,
|
983 |
-
"rstrip": false,
|
984 |
-
"single_word": false,
|
985 |
-
"special": true
|
986 |
-
},
|
987 |
-
"128123": {
|
988 |
-
"content": "<|reserved_special_token_118|>",
|
989 |
-
"lstrip": false,
|
990 |
-
"normalized": false,
|
991 |
-
"rstrip": false,
|
992 |
-
"single_word": false,
|
993 |
-
"special": true
|
994 |
-
},
|
995 |
-
"128124": {
|
996 |
-
"content": "<|reserved_special_token_119|>",
|
997 |
-
"lstrip": false,
|
998 |
-
"normalized": false,
|
999 |
-
"rstrip": false,
|
1000 |
-
"single_word": false,
|
1001 |
-
"special": true
|
1002 |
-
},
|
1003 |
-
"128125": {
|
1004 |
-
"content": "<|reserved_special_token_120|>",
|
1005 |
-
"lstrip": false,
|
1006 |
-
"normalized": false,
|
1007 |
-
"rstrip": false,
|
1008 |
-
"single_word": false,
|
1009 |
-
"special": true
|
1010 |
-
},
|
1011 |
-
"128126": {
|
1012 |
-
"content": "<|reserved_special_token_121|>",
|
1013 |
-
"lstrip": false,
|
1014 |
-
"normalized": false,
|
1015 |
-
"rstrip": false,
|
1016 |
-
"single_word": false,
|
1017 |
-
"special": true
|
1018 |
-
},
|
1019 |
-
"128127": {
|
1020 |
-
"content": "<|reserved_special_token_122|>",
|
1021 |
-
"lstrip": false,
|
1022 |
-
"normalized": false,
|
1023 |
-
"rstrip": false,
|
1024 |
-
"single_word": false,
|
1025 |
-
"special": true
|
1026 |
-
},
|
1027 |
-
"128128": {
|
1028 |
-
"content": "<|reserved_special_token_123|>",
|
1029 |
-
"lstrip": false,
|
1030 |
-
"normalized": false,
|
1031 |
-
"rstrip": false,
|
1032 |
-
"single_word": false,
|
1033 |
-
"special": true
|
1034 |
-
},
|
1035 |
-
"128129": {
|
1036 |
-
"content": "<|reserved_special_token_124|>",
|
1037 |
-
"lstrip": false,
|
1038 |
-
"normalized": false,
|
1039 |
-
"rstrip": false,
|
1040 |
-
"single_word": false,
|
1041 |
-
"special": true
|
1042 |
-
},
|
1043 |
-
"128130": {
|
1044 |
-
"content": "<|reserved_special_token_125|>",
|
1045 |
-
"lstrip": false,
|
1046 |
-
"normalized": false,
|
1047 |
-
"rstrip": false,
|
1048 |
-
"single_word": false,
|
1049 |
-
"special": true
|
1050 |
-
},
|
1051 |
-
"128131": {
|
1052 |
-
"content": "<|reserved_special_token_126|>",
|
1053 |
-
"lstrip": false,
|
1054 |
-
"normalized": false,
|
1055 |
-
"rstrip": false,
|
1056 |
-
"single_word": false,
|
1057 |
-
"special": true
|
1058 |
-
},
|
1059 |
-
"128132": {
|
1060 |
-
"content": "<|reserved_special_token_127|>",
|
1061 |
-
"lstrip": false,
|
1062 |
-
"normalized": false,
|
1063 |
-
"rstrip": false,
|
1064 |
-
"single_word": false,
|
1065 |
-
"special": true
|
1066 |
-
},
|
1067 |
-
"128133": {
|
1068 |
-
"content": "<|reserved_special_token_128|>",
|
1069 |
-
"lstrip": false,
|
1070 |
-
"normalized": false,
|
1071 |
-
"rstrip": false,
|
1072 |
-
"single_word": false,
|
1073 |
-
"special": true
|
1074 |
-
},
|
1075 |
-
"128134": {
|
1076 |
-
"content": "<|reserved_special_token_129|>",
|
1077 |
-
"lstrip": false,
|
1078 |
-
"normalized": false,
|
1079 |
-
"rstrip": false,
|
1080 |
-
"single_word": false,
|
1081 |
-
"special": true
|
1082 |
-
},
|
1083 |
-
"128135": {
|
1084 |
-
"content": "<|reserved_special_token_130|>",
|
1085 |
-
"lstrip": false,
|
1086 |
-
"normalized": false,
|
1087 |
-
"rstrip": false,
|
1088 |
-
"single_word": false,
|
1089 |
-
"special": true
|
1090 |
-
},
|
1091 |
-
"128136": {
|
1092 |
-
"content": "<|reserved_special_token_131|>",
|
1093 |
-
"lstrip": false,
|
1094 |
-
"normalized": false,
|
1095 |
-
"rstrip": false,
|
1096 |
-
"single_word": false,
|
1097 |
-
"special": true
|
1098 |
-
},
|
1099 |
-
"128137": {
|
1100 |
-
"content": "<|reserved_special_token_132|>",
|
1101 |
-
"lstrip": false,
|
1102 |
-
"normalized": false,
|
1103 |
-
"rstrip": false,
|
1104 |
-
"single_word": false,
|
1105 |
-
"special": true
|
1106 |
-
},
|
1107 |
-
"128138": {
|
1108 |
-
"content": "<|reserved_special_token_133|>",
|
1109 |
-
"lstrip": false,
|
1110 |
-
"normalized": false,
|
1111 |
-
"rstrip": false,
|
1112 |
-
"single_word": false,
|
1113 |
-
"special": true
|
1114 |
-
},
|
1115 |
-
"128139": {
|
1116 |
-
"content": "<|reserved_special_token_134|>",
|
1117 |
-
"lstrip": false,
|
1118 |
-
"normalized": false,
|
1119 |
-
"rstrip": false,
|
1120 |
-
"single_word": false,
|
1121 |
-
"special": true
|
1122 |
-
},
|
1123 |
-
"128140": {
|
1124 |
-
"content": "<|reserved_special_token_135|>",
|
1125 |
-
"lstrip": false,
|
1126 |
-
"normalized": false,
|
1127 |
-
"rstrip": false,
|
1128 |
-
"single_word": false,
|
1129 |
-
"special": true
|
1130 |
-
},
|
1131 |
-
"128141": {
|
1132 |
-
"content": "<|reserved_special_token_136|>",
|
1133 |
-
"lstrip": false,
|
1134 |
-
"normalized": false,
|
1135 |
-
"rstrip": false,
|
1136 |
-
"single_word": false,
|
1137 |
-
"special": true
|
1138 |
-
},
|
1139 |
-
"128142": {
|
1140 |
-
"content": "<|reserved_special_token_137|>",
|
1141 |
-
"lstrip": false,
|
1142 |
-
"normalized": false,
|
1143 |
-
"rstrip": false,
|
1144 |
-
"single_word": false,
|
1145 |
-
"special": true
|
1146 |
-
},
|
1147 |
-
"128143": {
|
1148 |
-
"content": "<|reserved_special_token_138|>",
|
1149 |
-
"lstrip": false,
|
1150 |
-
"normalized": false,
|
1151 |
-
"rstrip": false,
|
1152 |
-
"single_word": false,
|
1153 |
-
"special": true
|
1154 |
-
},
|
1155 |
-
"128144": {
|
1156 |
-
"content": "<|reserved_special_token_139|>",
|
1157 |
-
"lstrip": false,
|
1158 |
-
"normalized": false,
|
1159 |
-
"rstrip": false,
|
1160 |
-
"single_word": false,
|
1161 |
-
"special": true
|
1162 |
-
},
|
1163 |
-
"128145": {
|
1164 |
-
"content": "<|reserved_special_token_140|>",
|
1165 |
-
"lstrip": false,
|
1166 |
-
"normalized": false,
|
1167 |
-
"rstrip": false,
|
1168 |
-
"single_word": false,
|
1169 |
-
"special": true
|
1170 |
-
},
|
1171 |
-
"128146": {
|
1172 |
-
"content": "<|reserved_special_token_141|>",
|
1173 |
-
"lstrip": false,
|
1174 |
-
"normalized": false,
|
1175 |
-
"rstrip": false,
|
1176 |
-
"single_word": false,
|
1177 |
-
"special": true
|
1178 |
-
},
|
1179 |
-
"128147": {
|
1180 |
-
"content": "<|reserved_special_token_142|>",
|
1181 |
-
"lstrip": false,
|
1182 |
-
"normalized": false,
|
1183 |
-
"rstrip": false,
|
1184 |
-
"single_word": false,
|
1185 |
-
"special": true
|
1186 |
-
},
|
1187 |
-
"128148": {
|
1188 |
-
"content": "<|reserved_special_token_143|>",
|
1189 |
-
"lstrip": false,
|
1190 |
-
"normalized": false,
|
1191 |
-
"rstrip": false,
|
1192 |
-
"single_word": false,
|
1193 |
-
"special": true
|
1194 |
-
},
|
1195 |
-
"128149": {
|
1196 |
-
"content": "<|reserved_special_token_144|>",
|
1197 |
-
"lstrip": false,
|
1198 |
-
"normalized": false,
|
1199 |
-
"rstrip": false,
|
1200 |
-
"single_word": false,
|
1201 |
-
"special": true
|
1202 |
-
},
|
1203 |
-
"128150": {
|
1204 |
-
"content": "<|reserved_special_token_145|>",
|
1205 |
-
"lstrip": false,
|
1206 |
-
"normalized": false,
|
1207 |
-
"rstrip": false,
|
1208 |
-
"single_word": false,
|
1209 |
-
"special": true
|
1210 |
-
},
|
1211 |
-
"128151": {
|
1212 |
-
"content": "<|reserved_special_token_146|>",
|
1213 |
-
"lstrip": false,
|
1214 |
-
"normalized": false,
|
1215 |
-
"rstrip": false,
|
1216 |
-
"single_word": false,
|
1217 |
-
"special": true
|
1218 |
-
},
|
1219 |
-
"128152": {
|
1220 |
-
"content": "<|reserved_special_token_147|>",
|
1221 |
-
"lstrip": false,
|
1222 |
-
"normalized": false,
|
1223 |
-
"rstrip": false,
|
1224 |
-
"single_word": false,
|
1225 |
-
"special": true
|
1226 |
-
},
|
1227 |
-
"128153": {
|
1228 |
-
"content": "<|reserved_special_token_148|>",
|
1229 |
-
"lstrip": false,
|
1230 |
-
"normalized": false,
|
1231 |
-
"rstrip": false,
|
1232 |
-
"single_word": false,
|
1233 |
-
"special": true
|
1234 |
-
},
|
1235 |
-
"128154": {
|
1236 |
-
"content": "<|reserved_special_token_149|>",
|
1237 |
-
"lstrip": false,
|
1238 |
-
"normalized": false,
|
1239 |
-
"rstrip": false,
|
1240 |
-
"single_word": false,
|
1241 |
-
"special": true
|
1242 |
-
},
|
1243 |
-
"128155": {
|
1244 |
-
"content": "<|reserved_special_token_150|>",
|
1245 |
-
"lstrip": false,
|
1246 |
-
"normalized": false,
|
1247 |
-
"rstrip": false,
|
1248 |
-
"single_word": false,
|
1249 |
-
"special": true
|
1250 |
-
},
|
1251 |
-
"128156": {
|
1252 |
-
"content": "<|reserved_special_token_151|>",
|
1253 |
-
"lstrip": false,
|
1254 |
-
"normalized": false,
|
1255 |
-
"rstrip": false,
|
1256 |
-
"single_word": false,
|
1257 |
-
"special": true
|
1258 |
-
},
|
1259 |
-
"128157": {
|
1260 |
-
"content": "<|reserved_special_token_152|>",
|
1261 |
-
"lstrip": false,
|
1262 |
-
"normalized": false,
|
1263 |
-
"rstrip": false,
|
1264 |
-
"single_word": false,
|
1265 |
-
"special": true
|
1266 |
-
},
|
1267 |
-
"128158": {
|
1268 |
-
"content": "<|reserved_special_token_153|>",
|
1269 |
-
"lstrip": false,
|
1270 |
-
"normalized": false,
|
1271 |
-
"rstrip": false,
|
1272 |
-
"single_word": false,
|
1273 |
-
"special": true
|
1274 |
-
},
|
1275 |
-
"128159": {
|
1276 |
-
"content": "<|reserved_special_token_154|>",
|
1277 |
-
"lstrip": false,
|
1278 |
-
"normalized": false,
|
1279 |
-
"rstrip": false,
|
1280 |
-
"single_word": false,
|
1281 |
-
"special": true
|
1282 |
-
},
|
1283 |
-
"128160": {
|
1284 |
-
"content": "<|reserved_special_token_155|>",
|
1285 |
-
"lstrip": false,
|
1286 |
-
"normalized": false,
|
1287 |
-
"rstrip": false,
|
1288 |
-
"single_word": false,
|
1289 |
-
"special": true
|
1290 |
-
},
|
1291 |
-
"128161": {
|
1292 |
-
"content": "<|reserved_special_token_156|>",
|
1293 |
-
"lstrip": false,
|
1294 |
-
"normalized": false,
|
1295 |
-
"rstrip": false,
|
1296 |
-
"single_word": false,
|
1297 |
-
"special": true
|
1298 |
-
},
|
1299 |
-
"128162": {
|
1300 |
-
"content": "<|reserved_special_token_157|>",
|
1301 |
-
"lstrip": false,
|
1302 |
-
"normalized": false,
|
1303 |
-
"rstrip": false,
|
1304 |
-
"single_word": false,
|
1305 |
-
"special": true
|
1306 |
-
},
|
1307 |
-
"128163": {
|
1308 |
-
"content": "<|reserved_special_token_158|>",
|
1309 |
-
"lstrip": false,
|
1310 |
-
"normalized": false,
|
1311 |
-
"rstrip": false,
|
1312 |
-
"single_word": false,
|
1313 |
-
"special": true
|
1314 |
-
},
|
1315 |
-
"128164": {
|
1316 |
-
"content": "<|reserved_special_token_159|>",
|
1317 |
-
"lstrip": false,
|
1318 |
-
"normalized": false,
|
1319 |
-
"rstrip": false,
|
1320 |
-
"single_word": false,
|
1321 |
-
"special": true
|
1322 |
-
},
|
1323 |
-
"128165": {
|
1324 |
-
"content": "<|reserved_special_token_160|>",
|
1325 |
-
"lstrip": false,
|
1326 |
-
"normalized": false,
|
1327 |
-
"rstrip": false,
|
1328 |
-
"single_word": false,
|
1329 |
-
"special": true
|
1330 |
-
},
|
1331 |
-
"128166": {
|
1332 |
-
"content": "<|reserved_special_token_161|>",
|
1333 |
-
"lstrip": false,
|
1334 |
-
"normalized": false,
|
1335 |
-
"rstrip": false,
|
1336 |
-
"single_word": false,
|
1337 |
-
"special": true
|
1338 |
-
},
|
1339 |
-
"128167": {
|
1340 |
-
"content": "<|reserved_special_token_162|>",
|
1341 |
-
"lstrip": false,
|
1342 |
-
"normalized": false,
|
1343 |
-
"rstrip": false,
|
1344 |
-
"single_word": false,
|
1345 |
-
"special": true
|
1346 |
-
},
|
1347 |
-
"128168": {
|
1348 |
-
"content": "<|reserved_special_token_163|>",
|
1349 |
-
"lstrip": false,
|
1350 |
-
"normalized": false,
|
1351 |
-
"rstrip": false,
|
1352 |
-
"single_word": false,
|
1353 |
-
"special": true
|
1354 |
-
},
|
1355 |
-
"128169": {
|
1356 |
-
"content": "<|reserved_special_token_164|>",
|
1357 |
-
"lstrip": false,
|
1358 |
-
"normalized": false,
|
1359 |
-
"rstrip": false,
|
1360 |
-
"single_word": false,
|
1361 |
-
"special": true
|
1362 |
-
},
|
1363 |
-
"128170": {
|
1364 |
-
"content": "<|reserved_special_token_165|>",
|
1365 |
-
"lstrip": false,
|
1366 |
-
"normalized": false,
|
1367 |
-
"rstrip": false,
|
1368 |
-
"single_word": false,
|
1369 |
-
"special": true
|
1370 |
-
},
|
1371 |
-
"128171": {
|
1372 |
-
"content": "<|reserved_special_token_166|>",
|
1373 |
-
"lstrip": false,
|
1374 |
-
"normalized": false,
|
1375 |
-
"rstrip": false,
|
1376 |
-
"single_word": false,
|
1377 |
-
"special": true
|
1378 |
-
},
|
1379 |
-
"128172": {
|
1380 |
-
"content": "<|reserved_special_token_167|>",
|
1381 |
-
"lstrip": false,
|
1382 |
-
"normalized": false,
|
1383 |
-
"rstrip": false,
|
1384 |
-
"single_word": false,
|
1385 |
-
"special": true
|
1386 |
-
},
|
1387 |
-
"128173": {
|
1388 |
-
"content": "<|reserved_special_token_168|>",
|
1389 |
-
"lstrip": false,
|
1390 |
-
"normalized": false,
|
1391 |
-
"rstrip": false,
|
1392 |
-
"single_word": false,
|
1393 |
-
"special": true
|
1394 |
-
},
|
1395 |
-
"128174": {
|
1396 |
-
"content": "<|reserved_special_token_169|>",
|
1397 |
-
"lstrip": false,
|
1398 |
-
"normalized": false,
|
1399 |
-
"rstrip": false,
|
1400 |
-
"single_word": false,
|
1401 |
-
"special": true
|
1402 |
-
},
|
1403 |
-
"128175": {
|
1404 |
-
"content": "<|reserved_special_token_170|>",
|
1405 |
-
"lstrip": false,
|
1406 |
-
"normalized": false,
|
1407 |
-
"rstrip": false,
|
1408 |
-
"single_word": false,
|
1409 |
-
"special": true
|
1410 |
-
},
|
1411 |
-
"128176": {
|
1412 |
-
"content": "<|reserved_special_token_171|>",
|
1413 |
-
"lstrip": false,
|
1414 |
-
"normalized": false,
|
1415 |
-
"rstrip": false,
|
1416 |
-
"single_word": false,
|
1417 |
-
"special": true
|
1418 |
-
},
|
1419 |
-
"128177": {
|
1420 |
-
"content": "<|reserved_special_token_172|>",
|
1421 |
-
"lstrip": false,
|
1422 |
-
"normalized": false,
|
1423 |
-
"rstrip": false,
|
1424 |
-
"single_word": false,
|
1425 |
-
"special": true
|
1426 |
-
},
|
1427 |
-
"128178": {
|
1428 |
-
"content": "<|reserved_special_token_173|>",
|
1429 |
-
"lstrip": false,
|
1430 |
-
"normalized": false,
|
1431 |
-
"rstrip": false,
|
1432 |
-
"single_word": false,
|
1433 |
-
"special": true
|
1434 |
-
},
|
1435 |
-
"128179": {
|
1436 |
-
"content": "<|reserved_special_token_174|>",
|
1437 |
-
"lstrip": false,
|
1438 |
-
"normalized": false,
|
1439 |
-
"rstrip": false,
|
1440 |
-
"single_word": false,
|
1441 |
-
"special": true
|
1442 |
-
},
|
1443 |
-
"128180": {
|
1444 |
-
"content": "<|reserved_special_token_175|>",
|
1445 |
-
"lstrip": false,
|
1446 |
-
"normalized": false,
|
1447 |
-
"rstrip": false,
|
1448 |
-
"single_word": false,
|
1449 |
-
"special": true
|
1450 |
-
},
|
1451 |
-
"128181": {
|
1452 |
-
"content": "<|reserved_special_token_176|>",
|
1453 |
-
"lstrip": false,
|
1454 |
-
"normalized": false,
|
1455 |
-
"rstrip": false,
|
1456 |
-
"single_word": false,
|
1457 |
-
"special": true
|
1458 |
-
},
|
1459 |
-
"128182": {
|
1460 |
-
"content": "<|reserved_special_token_177|>",
|
1461 |
-
"lstrip": false,
|
1462 |
-
"normalized": false,
|
1463 |
-
"rstrip": false,
|
1464 |
-
"single_word": false,
|
1465 |
-
"special": true
|
1466 |
-
},
|
1467 |
-
"128183": {
|
1468 |
-
"content": "<|reserved_special_token_178|>",
|
1469 |
-
"lstrip": false,
|
1470 |
-
"normalized": false,
|
1471 |
-
"rstrip": false,
|
1472 |
-
"single_word": false,
|
1473 |
-
"special": true
|
1474 |
-
},
|
1475 |
-
"128184": {
|
1476 |
-
"content": "<|reserved_special_token_179|>",
|
1477 |
-
"lstrip": false,
|
1478 |
-
"normalized": false,
|
1479 |
-
"rstrip": false,
|
1480 |
-
"single_word": false,
|
1481 |
-
"special": true
|
1482 |
-
},
|
1483 |
-
"128185": {
|
1484 |
-
"content": "<|reserved_special_token_180|>",
|
1485 |
-
"lstrip": false,
|
1486 |
-
"normalized": false,
|
1487 |
-
"rstrip": false,
|
1488 |
-
"single_word": false,
|
1489 |
-
"special": true
|
1490 |
-
},
|
1491 |
-
"128186": {
|
1492 |
-
"content": "<|reserved_special_token_181|>",
|
1493 |
-
"lstrip": false,
|
1494 |
-
"normalized": false,
|
1495 |
-
"rstrip": false,
|
1496 |
-
"single_word": false,
|
1497 |
-
"special": true
|
1498 |
-
},
|
1499 |
-
"128187": {
|
1500 |
-
"content": "<|reserved_special_token_182|>",
|
1501 |
-
"lstrip": false,
|
1502 |
-
"normalized": false,
|
1503 |
-
"rstrip": false,
|
1504 |
-
"single_word": false,
|
1505 |
-
"special": true
|
1506 |
-
},
|
1507 |
-
"128188": {
|
1508 |
-
"content": "<|reserved_special_token_183|>",
|
1509 |
-
"lstrip": false,
|
1510 |
-
"normalized": false,
|
1511 |
-
"rstrip": false,
|
1512 |
-
"single_word": false,
|
1513 |
-
"special": true
|
1514 |
-
},
|
1515 |
-
"128189": {
|
1516 |
-
"content": "<|reserved_special_token_184|>",
|
1517 |
-
"lstrip": false,
|
1518 |
-
"normalized": false,
|
1519 |
-
"rstrip": false,
|
1520 |
-
"single_word": false,
|
1521 |
-
"special": true
|
1522 |
-
},
|
1523 |
-
"128190": {
|
1524 |
-
"content": "<|reserved_special_token_185|>",
|
1525 |
-
"lstrip": false,
|
1526 |
-
"normalized": false,
|
1527 |
-
"rstrip": false,
|
1528 |
-
"single_word": false,
|
1529 |
-
"special": true
|
1530 |
-
},
|
1531 |
-
"128191": {
|
1532 |
-
"content": "<|reserved_special_token_186|>",
|
1533 |
-
"lstrip": false,
|
1534 |
-
"normalized": false,
|
1535 |
-
"rstrip": false,
|
1536 |
-
"single_word": false,
|
1537 |
-
"special": true
|
1538 |
-
},
|
1539 |
-
"128192": {
|
1540 |
-
"content": "<|reserved_special_token_187|>",
|
1541 |
-
"lstrip": false,
|
1542 |
-
"normalized": false,
|
1543 |
-
"rstrip": false,
|
1544 |
-
"single_word": false,
|
1545 |
-
"special": true
|
1546 |
-
},
|
1547 |
-
"128193": {
|
1548 |
-
"content": "<|reserved_special_token_188|>",
|
1549 |
-
"lstrip": false,
|
1550 |
-
"normalized": false,
|
1551 |
-
"rstrip": false,
|
1552 |
-
"single_word": false,
|
1553 |
-
"special": true
|
1554 |
-
},
|
1555 |
-
"128194": {
|
1556 |
-
"content": "<|reserved_special_token_189|>",
|
1557 |
-
"lstrip": false,
|
1558 |
-
"normalized": false,
|
1559 |
-
"rstrip": false,
|
1560 |
-
"single_word": false,
|
1561 |
-
"special": true
|
1562 |
-
},
|
1563 |
-
"128195": {
|
1564 |
-
"content": "<|reserved_special_token_190|>",
|
1565 |
-
"lstrip": false,
|
1566 |
-
"normalized": false,
|
1567 |
-
"rstrip": false,
|
1568 |
-
"single_word": false,
|
1569 |
-
"special": true
|
1570 |
-
},
|
1571 |
-
"128196": {
|
1572 |
-
"content": "<|reserved_special_token_191|>",
|
1573 |
-
"lstrip": false,
|
1574 |
-
"normalized": false,
|
1575 |
-
"rstrip": false,
|
1576 |
-
"single_word": false,
|
1577 |
-
"special": true
|
1578 |
-
},
|
1579 |
-
"128197": {
|
1580 |
-
"content": "<|reserved_special_token_192|>",
|
1581 |
-
"lstrip": false,
|
1582 |
-
"normalized": false,
|
1583 |
-
"rstrip": false,
|
1584 |
-
"single_word": false,
|
1585 |
-
"special": true
|
1586 |
-
},
|
1587 |
-
"128198": {
|
1588 |
-
"content": "<|reserved_special_token_193|>",
|
1589 |
-
"lstrip": false,
|
1590 |
-
"normalized": false,
|
1591 |
-
"rstrip": false,
|
1592 |
-
"single_word": false,
|
1593 |
-
"special": true
|
1594 |
-
},
|
1595 |
-
"128199": {
|
1596 |
-
"content": "<|reserved_special_token_194|>",
|
1597 |
-
"lstrip": false,
|
1598 |
-
"normalized": false,
|
1599 |
-
"rstrip": false,
|
1600 |
-
"single_word": false,
|
1601 |
-
"special": true
|
1602 |
-
},
|
1603 |
-
"128200": {
|
1604 |
-
"content": "<|reserved_special_token_195|>",
|
1605 |
-
"lstrip": false,
|
1606 |
-
"normalized": false,
|
1607 |
-
"rstrip": false,
|
1608 |
-
"single_word": false,
|
1609 |
-
"special": true
|
1610 |
-
},
|
1611 |
-
"128201": {
|
1612 |
-
"content": "<|reserved_special_token_196|>",
|
1613 |
-
"lstrip": false,
|
1614 |
-
"normalized": false,
|
1615 |
-
"rstrip": false,
|
1616 |
-
"single_word": false,
|
1617 |
-
"special": true
|
1618 |
-
},
|
1619 |
-
"128202": {
|
1620 |
-
"content": "<|reserved_special_token_197|>",
|
1621 |
-
"lstrip": false,
|
1622 |
-
"normalized": false,
|
1623 |
-
"rstrip": false,
|
1624 |
-
"single_word": false,
|
1625 |
-
"special": true
|
1626 |
-
},
|
1627 |
-
"128203": {
|
1628 |
-
"content": "<|reserved_special_token_198|>",
|
1629 |
-
"lstrip": false,
|
1630 |
-
"normalized": false,
|
1631 |
-
"rstrip": false,
|
1632 |
-
"single_word": false,
|
1633 |
-
"special": true
|
1634 |
-
},
|
1635 |
-
"128204": {
|
1636 |
-
"content": "<|reserved_special_token_199|>",
|
1637 |
-
"lstrip": false,
|
1638 |
-
"normalized": false,
|
1639 |
-
"rstrip": false,
|
1640 |
-
"single_word": false,
|
1641 |
-
"special": true
|
1642 |
-
},
|
1643 |
-
"128205": {
|
1644 |
-
"content": "<|reserved_special_token_200|>",
|
1645 |
-
"lstrip": false,
|
1646 |
-
"normalized": false,
|
1647 |
-
"rstrip": false,
|
1648 |
-
"single_word": false,
|
1649 |
-
"special": true
|
1650 |
-
},
|
1651 |
-
"128206": {
|
1652 |
-
"content": "<|reserved_special_token_201|>",
|
1653 |
-
"lstrip": false,
|
1654 |
-
"normalized": false,
|
1655 |
-
"rstrip": false,
|
1656 |
-
"single_word": false,
|
1657 |
-
"special": true
|
1658 |
-
},
|
1659 |
-
"128207": {
|
1660 |
-
"content": "<|reserved_special_token_202|>",
|
1661 |
-
"lstrip": false,
|
1662 |
-
"normalized": false,
|
1663 |
-
"rstrip": false,
|
1664 |
-
"single_word": false,
|
1665 |
-
"special": true
|
1666 |
-
},
|
1667 |
-
"128208": {
|
1668 |
-
"content": "<|reserved_special_token_203|>",
|
1669 |
-
"lstrip": false,
|
1670 |
-
"normalized": false,
|
1671 |
-
"rstrip": false,
|
1672 |
-
"single_word": false,
|
1673 |
-
"special": true
|
1674 |
-
},
|
1675 |
-
"128209": {
|
1676 |
-
"content": "<|reserved_special_token_204|>",
|
1677 |
-
"lstrip": false,
|
1678 |
-
"normalized": false,
|
1679 |
-
"rstrip": false,
|
1680 |
-
"single_word": false,
|
1681 |
-
"special": true
|
1682 |
-
},
|
1683 |
-
"128210": {
|
1684 |
-
"content": "<|reserved_special_token_205|>",
|
1685 |
-
"lstrip": false,
|
1686 |
-
"normalized": false,
|
1687 |
-
"rstrip": false,
|
1688 |
-
"single_word": false,
|
1689 |
-
"special": true
|
1690 |
-
},
|
1691 |
-
"128211": {
|
1692 |
-
"content": "<|reserved_special_token_206|>",
|
1693 |
-
"lstrip": false,
|
1694 |
-
"normalized": false,
|
1695 |
-
"rstrip": false,
|
1696 |
-
"single_word": false,
|
1697 |
-
"special": true
|
1698 |
-
},
|
1699 |
-
"128212": {
|
1700 |
-
"content": "<|reserved_special_token_207|>",
|
1701 |
-
"lstrip": false,
|
1702 |
-
"normalized": false,
|
1703 |
-
"rstrip": false,
|
1704 |
-
"single_word": false,
|
1705 |
-
"special": true
|
1706 |
-
},
|
1707 |
-
"128213": {
|
1708 |
-
"content": "<|reserved_special_token_208|>",
|
1709 |
-
"lstrip": false,
|
1710 |
-
"normalized": false,
|
1711 |
-
"rstrip": false,
|
1712 |
-
"single_word": false,
|
1713 |
-
"special": true
|
1714 |
-
},
|
1715 |
-
"128214": {
|
1716 |
-
"content": "<|reserved_special_token_209|>",
|
1717 |
-
"lstrip": false,
|
1718 |
-
"normalized": false,
|
1719 |
-
"rstrip": false,
|
1720 |
-
"single_word": false,
|
1721 |
-
"special": true
|
1722 |
-
},
|
1723 |
-
"128215": {
|
1724 |
-
"content": "<|reserved_special_token_210|>",
|
1725 |
-
"lstrip": false,
|
1726 |
-
"normalized": false,
|
1727 |
-
"rstrip": false,
|
1728 |
-
"single_word": false,
|
1729 |
-
"special": true
|
1730 |
-
},
|
1731 |
-
"128216": {
|
1732 |
-
"content": "<|reserved_special_token_211|>",
|
1733 |
-
"lstrip": false,
|
1734 |
-
"normalized": false,
|
1735 |
-
"rstrip": false,
|
1736 |
-
"single_word": false,
|
1737 |
-
"special": true
|
1738 |
-
},
|
1739 |
-
"128217": {
|
1740 |
-
"content": "<|reserved_special_token_212|>",
|
1741 |
-
"lstrip": false,
|
1742 |
-
"normalized": false,
|
1743 |
-
"rstrip": false,
|
1744 |
-
"single_word": false,
|
1745 |
-
"special": true
|
1746 |
-
},
|
1747 |
-
"128218": {
|
1748 |
-
"content": "<|reserved_special_token_213|>",
|
1749 |
-
"lstrip": false,
|
1750 |
-
"normalized": false,
|
1751 |
-
"rstrip": false,
|
1752 |
-
"single_word": false,
|
1753 |
-
"special": true
|
1754 |
-
},
|
1755 |
-
"128219": {
|
1756 |
-
"content": "<|reserved_special_token_214|>",
|
1757 |
-
"lstrip": false,
|
1758 |
-
"normalized": false,
|
1759 |
-
"rstrip": false,
|
1760 |
-
"single_word": false,
|
1761 |
-
"special": true
|
1762 |
-
},
|
1763 |
-
"128220": {
|
1764 |
-
"content": "<|reserved_special_token_215|>",
|
1765 |
-
"lstrip": false,
|
1766 |
-
"normalized": false,
|
1767 |
-
"rstrip": false,
|
1768 |
-
"single_word": false,
|
1769 |
-
"special": true
|
1770 |
-
},
|
1771 |
-
"128221": {
|
1772 |
-
"content": "<|reserved_special_token_216|>",
|
1773 |
-
"lstrip": false,
|
1774 |
-
"normalized": false,
|
1775 |
-
"rstrip": false,
|
1776 |
-
"single_word": false,
|
1777 |
-
"special": true
|
1778 |
-
},
|
1779 |
-
"128222": {
|
1780 |
-
"content": "<|reserved_special_token_217|>",
|
1781 |
-
"lstrip": false,
|
1782 |
-
"normalized": false,
|
1783 |
-
"rstrip": false,
|
1784 |
-
"single_word": false,
|
1785 |
-
"special": true
|
1786 |
-
},
|
1787 |
-
"128223": {
|
1788 |
-
"content": "<|reserved_special_token_218|>",
|
1789 |
-
"lstrip": false,
|
1790 |
-
"normalized": false,
|
1791 |
-
"rstrip": false,
|
1792 |
-
"single_word": false,
|
1793 |
-
"special": true
|
1794 |
-
},
|
1795 |
-
"128224": {
|
1796 |
-
"content": "<|reserved_special_token_219|>",
|
1797 |
-
"lstrip": false,
|
1798 |
-
"normalized": false,
|
1799 |
-
"rstrip": false,
|
1800 |
-
"single_word": false,
|
1801 |
-
"special": true
|
1802 |
-
},
|
1803 |
-
"128225": {
|
1804 |
-
"content": "<|reserved_special_token_220|>",
|
1805 |
-
"lstrip": false,
|
1806 |
-
"normalized": false,
|
1807 |
-
"rstrip": false,
|
1808 |
-
"single_word": false,
|
1809 |
-
"special": true
|
1810 |
-
},
|
1811 |
-
"128226": {
|
1812 |
-
"content": "<|reserved_special_token_221|>",
|
1813 |
-
"lstrip": false,
|
1814 |
-
"normalized": false,
|
1815 |
-
"rstrip": false,
|
1816 |
-
"single_word": false,
|
1817 |
-
"special": true
|
1818 |
-
},
|
1819 |
-
"128227": {
|
1820 |
-
"content": "<|reserved_special_token_222|>",
|
1821 |
-
"lstrip": false,
|
1822 |
-
"normalized": false,
|
1823 |
-
"rstrip": false,
|
1824 |
-
"single_word": false,
|
1825 |
-
"special": true
|
1826 |
-
},
|
1827 |
-
"128228": {
|
1828 |
-
"content": "<|reserved_special_token_223|>",
|
1829 |
-
"lstrip": false,
|
1830 |
-
"normalized": false,
|
1831 |
-
"rstrip": false,
|
1832 |
-
"single_word": false,
|
1833 |
-
"special": true
|
1834 |
-
},
|
1835 |
-
"128229": {
|
1836 |
-
"content": "<|reserved_special_token_224|>",
|
1837 |
-
"lstrip": false,
|
1838 |
-
"normalized": false,
|
1839 |
-
"rstrip": false,
|
1840 |
-
"single_word": false,
|
1841 |
-
"special": true
|
1842 |
-
},
|
1843 |
-
"128230": {
|
1844 |
-
"content": "<|reserved_special_token_225|>",
|
1845 |
-
"lstrip": false,
|
1846 |
-
"normalized": false,
|
1847 |
-
"rstrip": false,
|
1848 |
-
"single_word": false,
|
1849 |
-
"special": true
|
1850 |
-
},
|
1851 |
-
"128231": {
|
1852 |
-
"content": "<|reserved_special_token_226|>",
|
1853 |
-
"lstrip": false,
|
1854 |
-
"normalized": false,
|
1855 |
-
"rstrip": false,
|
1856 |
-
"single_word": false,
|
1857 |
-
"special": true
|
1858 |
-
},
|
1859 |
-
"128232": {
|
1860 |
-
"content": "<|reserved_special_token_227|>",
|
1861 |
-
"lstrip": false,
|
1862 |
-
"normalized": false,
|
1863 |
-
"rstrip": false,
|
1864 |
-
"single_word": false,
|
1865 |
-
"special": true
|
1866 |
-
},
|
1867 |
-
"128233": {
|
1868 |
-
"content": "<|reserved_special_token_228|>",
|
1869 |
-
"lstrip": false,
|
1870 |
-
"normalized": false,
|
1871 |
-
"rstrip": false,
|
1872 |
-
"single_word": false,
|
1873 |
-
"special": true
|
1874 |
-
},
|
1875 |
-
"128234": {
|
1876 |
-
"content": "<|reserved_special_token_229|>",
|
1877 |
-
"lstrip": false,
|
1878 |
-
"normalized": false,
|
1879 |
-
"rstrip": false,
|
1880 |
-
"single_word": false,
|
1881 |
-
"special": true
|
1882 |
-
},
|
1883 |
-
"128235": {
|
1884 |
-
"content": "<|reserved_special_token_230|>",
|
1885 |
-
"lstrip": false,
|
1886 |
-
"normalized": false,
|
1887 |
-
"rstrip": false,
|
1888 |
-
"single_word": false,
|
1889 |
-
"special": true
|
1890 |
-
},
|
1891 |
-
"128236": {
|
1892 |
-
"content": "<|reserved_special_token_231|>",
|
1893 |
-
"lstrip": false,
|
1894 |
-
"normalized": false,
|
1895 |
-
"rstrip": false,
|
1896 |
-
"single_word": false,
|
1897 |
-
"special": true
|
1898 |
-
},
|
1899 |
-
"128237": {
|
1900 |
-
"content": "<|reserved_special_token_232|>",
|
1901 |
-
"lstrip": false,
|
1902 |
-
"normalized": false,
|
1903 |
-
"rstrip": false,
|
1904 |
-
"single_word": false,
|
1905 |
-
"special": true
|
1906 |
-
},
|
1907 |
-
"128238": {
|
1908 |
-
"content": "<|reserved_special_token_233|>",
|
1909 |
-
"lstrip": false,
|
1910 |
-
"normalized": false,
|
1911 |
-
"rstrip": false,
|
1912 |
-
"single_word": false,
|
1913 |
-
"special": true
|
1914 |
-
},
|
1915 |
-
"128239": {
|
1916 |
-
"content": "<|reserved_special_token_234|>",
|
1917 |
-
"lstrip": false,
|
1918 |
-
"normalized": false,
|
1919 |
-
"rstrip": false,
|
1920 |
-
"single_word": false,
|
1921 |
-
"special": true
|
1922 |
-
},
|
1923 |
-
"128240": {
|
1924 |
-
"content": "<|reserved_special_token_235|>",
|
1925 |
-
"lstrip": false,
|
1926 |
-
"normalized": false,
|
1927 |
-
"rstrip": false,
|
1928 |
-
"single_word": false,
|
1929 |
-
"special": true
|
1930 |
-
},
|
1931 |
-
"128241": {
|
1932 |
-
"content": "<|reserved_special_token_236|>",
|
1933 |
-
"lstrip": false,
|
1934 |
-
"normalized": false,
|
1935 |
-
"rstrip": false,
|
1936 |
-
"single_word": false,
|
1937 |
-
"special": true
|
1938 |
-
},
|
1939 |
-
"128242": {
|
1940 |
-
"content": "<|reserved_special_token_237|>",
|
1941 |
-
"lstrip": false,
|
1942 |
-
"normalized": false,
|
1943 |
-
"rstrip": false,
|
1944 |
-
"single_word": false,
|
1945 |
-
"special": true
|
1946 |
-
},
|
1947 |
-
"128243": {
|
1948 |
-
"content": "<|reserved_special_token_238|>",
|
1949 |
-
"lstrip": false,
|
1950 |
-
"normalized": false,
|
1951 |
-
"rstrip": false,
|
1952 |
-
"single_word": false,
|
1953 |
-
"special": true
|
1954 |
-
},
|
1955 |
-
"128244": {
|
1956 |
-
"content": "<|reserved_special_token_239|>",
|
1957 |
-
"lstrip": false,
|
1958 |
-
"normalized": false,
|
1959 |
-
"rstrip": false,
|
1960 |
-
"single_word": false,
|
1961 |
-
"special": true
|
1962 |
-
},
|
1963 |
-
"128245": {
|
1964 |
-
"content": "<|reserved_special_token_240|>",
|
1965 |
-
"lstrip": false,
|
1966 |
-
"normalized": false,
|
1967 |
-
"rstrip": false,
|
1968 |
-
"single_word": false,
|
1969 |
-
"special": true
|
1970 |
-
},
|
1971 |
-
"128246": {
|
1972 |
-
"content": "<|reserved_special_token_241|>",
|
1973 |
-
"lstrip": false,
|
1974 |
-
"normalized": false,
|
1975 |
-
"rstrip": false,
|
1976 |
-
"single_word": false,
|
1977 |
-
"special": true
|
1978 |
-
},
|
1979 |
-
"128247": {
|
1980 |
-
"content": "<|reserved_special_token_242|>",
|
1981 |
-
"lstrip": false,
|
1982 |
-
"normalized": false,
|
1983 |
-
"rstrip": false,
|
1984 |
-
"single_word": false,
|
1985 |
-
"special": true
|
1986 |
-
},
|
1987 |
-
"128248": {
|
1988 |
-
"content": "<|reserved_special_token_243|>",
|
1989 |
-
"lstrip": false,
|
1990 |
-
"normalized": false,
|
1991 |
-
"rstrip": false,
|
1992 |
-
"single_word": false,
|
1993 |
-
"special": true
|
1994 |
-
},
|
1995 |
-
"128249": {
|
1996 |
-
"content": "<|reserved_special_token_244|>",
|
1997 |
-
"lstrip": false,
|
1998 |
-
"normalized": false,
|
1999 |
-
"rstrip": false,
|
2000 |
-
"single_word": false,
|
2001 |
-
"special": true
|
2002 |
-
},
|
2003 |
-
"128250": {
|
2004 |
-
"content": "<|reserved_special_token_245|>",
|
2005 |
-
"lstrip": false,
|
2006 |
-
"normalized": false,
|
2007 |
-
"rstrip": false,
|
2008 |
-
"single_word": false,
|
2009 |
-
"special": true
|
2010 |
-
},
|
2011 |
-
"128251": {
|
2012 |
-
"content": "<|reserved_special_token_246|>",
|
2013 |
-
"lstrip": false,
|
2014 |
-
"normalized": false,
|
2015 |
-
"rstrip": false,
|
2016 |
-
"single_word": false,
|
2017 |
-
"special": true
|
2018 |
-
},
|
2019 |
-
"128252": {
|
2020 |
-
"content": "<|reserved_special_token_247|>",
|
2021 |
-
"lstrip": false,
|
2022 |
-
"normalized": false,
|
2023 |
-
"rstrip": false,
|
2024 |
-
"single_word": false,
|
2025 |
-
"special": true
|
2026 |
-
},
|
2027 |
-
"128253": {
|
2028 |
-
"content": "<|reserved_special_token_248|>",
|
2029 |
-
"lstrip": false,
|
2030 |
-
"normalized": false,
|
2031 |
-
"rstrip": false,
|
2032 |
-
"single_word": false,
|
2033 |
-
"special": true
|
2034 |
-
},
|
2035 |
-
"128254": {
|
2036 |
-
"content": "<|reserved_special_token_249|>",
|
2037 |
-
"lstrip": false,
|
2038 |
-
"normalized": false,
|
2039 |
-
"rstrip": false,
|
2040 |
-
"single_word": false,
|
2041 |
-
"special": true
|
2042 |
-
},
|
2043 |
-
"128255": {
|
2044 |
-
"content": "<|reserved_special_token_250|>",
|
2045 |
-
"lstrip": false,
|
2046 |
-
"normalized": false,
|
2047 |
-
"rstrip": false,
|
2048 |
-
"single_word": false,
|
2049 |
-
"special": true
|
2050 |
-
},
|
2051 |
-
"145791": {
|
2052 |
-
"content": "<|none1|>",
|
2053 |
-
"lstrip": false,
|
2054 |
-
"normalized": false,
|
2055 |
-
"rstrip": false,
|
2056 |
-
"single_word": false,
|
2057 |
-
"special": true
|
2058 |
-
}
|
2059 |
-
},
|
2060 |
-
"additional_special_tokens": [
|
2061 |
-
"<|none1|>"
|
2062 |
-
],
|
2063 |
-
"bos_token": "<|begin_of_text|>",
|
2064 |
-
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content + '\\n' }}{% endif %}{% endfor %}",
|
2065 |
-
"clean_up_tokenization_spaces": true,
|
2066 |
-
"eos_token": "<|end_of_text|>",
|
2067 |
-
"model_input_names": [
|
2068 |
-
"input_ids",
|
2069 |
-
"attention_mask"
|
2070 |
-
],
|
2071 |
-
"model_max_length": 1000000000000000019884624838656,
|
2072 |
-
"pad_token": "<|end_of_text|>",
|
2073 |
-
"padding_side": "right",
|
2074 |
-
"split_special_tokens": false,
|
2075 |
-
"tokenizer_class": "PreTrainedTokenizerFast"
|
2076 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/trainer_state.json
DELETED
@@ -1,1168 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 6.589743589743589,
|
5 |
-
"eval_steps": 5,
|
6 |
-
"global_step": 133,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.05128205128205128,
|
13 |
-
"grad_norm": 30.696048736572266,
|
14 |
-
"learning_rate": 2e-07,
|
15 |
-
"loss": 2.6145,
|
16 |
-
"step": 1
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"epoch": 0.05128205128205128,
|
20 |
-
"eval_loss": 2.721662998199463,
|
21 |
-
"eval_runtime": 0.1874,
|
22 |
-
"eval_samples_per_second": 165.427,
|
23 |
-
"eval_steps_per_second": 26.682,
|
24 |
-
"step": 1
|
25 |
-
},
|
26 |
-
{
|
27 |
-
"epoch": 0.10256410256410256,
|
28 |
-
"grad_norm": 31.234418869018555,
|
29 |
-
"learning_rate": 4e-07,
|
30 |
-
"loss": 2.839,
|
31 |
-
"step": 2
|
32 |
-
},
|
33 |
-
{
|
34 |
-
"epoch": 0.15384615384615385,
|
35 |
-
"grad_norm": 26.09066390991211,
|
36 |
-
"learning_rate": 6e-07,
|
37 |
-
"loss": 2.804,
|
38 |
-
"step": 3
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"epoch": 0.20512820512820512,
|
42 |
-
"grad_norm": 25.11672019958496,
|
43 |
-
"learning_rate": 8e-07,
|
44 |
-
"loss": 2.7178,
|
45 |
-
"step": 4
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"epoch": 0.2564102564102564,
|
49 |
-
"grad_norm": 25.194042205810547,
|
50 |
-
"learning_rate": 1e-06,
|
51 |
-
"loss": 2.7668,
|
52 |
-
"step": 5
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"epoch": 0.2564102564102564,
|
56 |
-
"eval_loss": 2.701810359954834,
|
57 |
-
"eval_runtime": 0.1865,
|
58 |
-
"eval_samples_per_second": 166.189,
|
59 |
-
"eval_steps_per_second": 26.805,
|
60 |
-
"step": 5
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"epoch": 0.3076923076923077,
|
64 |
-
"grad_norm": 31.70111656188965,
|
65 |
-
"learning_rate": 1.2e-06,
|
66 |
-
"loss": 2.5639,
|
67 |
-
"step": 6
|
68 |
-
},
|
69 |
-
{
|
70 |
-
"epoch": 0.358974358974359,
|
71 |
-
"grad_norm": 25.10308837890625,
|
72 |
-
"learning_rate": 1.4e-06,
|
73 |
-
"loss": 2.6011,
|
74 |
-
"step": 7
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"epoch": 0.41025641025641024,
|
78 |
-
"grad_norm": 25.298452377319336,
|
79 |
-
"learning_rate": 1.6e-06,
|
80 |
-
"loss": 2.6779,
|
81 |
-
"step": 8
|
82 |
-
},
|
83 |
-
{
|
84 |
-
"epoch": 0.46153846153846156,
|
85 |
-
"grad_norm": 22.12431526184082,
|
86 |
-
"learning_rate": 1.8e-06,
|
87 |
-
"loss": 2.5438,
|
88 |
-
"step": 9
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"epoch": 0.5128205128205128,
|
92 |
-
"grad_norm": 17.181961059570312,
|
93 |
-
"learning_rate": 2e-06,
|
94 |
-
"loss": 2.6304,
|
95 |
-
"step": 10
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"epoch": 0.5128205128205128,
|
99 |
-
"eval_loss": 2.5064780712127686,
|
100 |
-
"eval_runtime": 0.1877,
|
101 |
-
"eval_samples_per_second": 165.144,
|
102 |
-
"eval_steps_per_second": 26.636,
|
103 |
-
"step": 10
|
104 |
-
},
|
105 |
-
{
|
106 |
-
"epoch": 0.5641025641025641,
|
107 |
-
"grad_norm": 15.064467430114746,
|
108 |
-
"learning_rate": 1.9998476951563913e-06,
|
109 |
-
"loss": 2.6119,
|
110 |
-
"step": 11
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"epoch": 0.6153846153846154,
|
114 |
-
"grad_norm": 15.15453815460205,
|
115 |
-
"learning_rate": 1.9993908270190957e-06,
|
116 |
-
"loss": 2.5618,
|
117 |
-
"step": 12
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"epoch": 0.6666666666666666,
|
121 |
-
"grad_norm": 14.976338386535645,
|
122 |
-
"learning_rate": 1.998629534754574e-06,
|
123 |
-
"loss": 2.5799,
|
124 |
-
"step": 13
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"epoch": 0.717948717948718,
|
128 |
-
"grad_norm": 16.855302810668945,
|
129 |
-
"learning_rate": 1.997564050259824e-06,
|
130 |
-
"loss": 2.4803,
|
131 |
-
"step": 14
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"epoch": 0.7692307692307693,
|
135 |
-
"grad_norm": 14.893013954162598,
|
136 |
-
"learning_rate": 1.9961946980917456e-06,
|
137 |
-
"loss": 2.3635,
|
138 |
-
"step": 15
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"epoch": 0.7692307692307693,
|
142 |
-
"eval_loss": 2.3580050468444824,
|
143 |
-
"eval_runtime": 0.1876,
|
144 |
-
"eval_samples_per_second": 165.285,
|
145 |
-
"eval_steps_per_second": 26.659,
|
146 |
-
"step": 15
|
147 |
-
},
|
148 |
-
{
|
149 |
-
"epoch": 0.8205128205128205,
|
150 |
-
"grad_norm": 12.848993301391602,
|
151 |
-
"learning_rate": 1.994521895368273e-06,
|
152 |
-
"loss": 2.4411,
|
153 |
-
"step": 16
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"epoch": 0.8717948717948718,
|
157 |
-
"grad_norm": 15.440024375915527,
|
158 |
-
"learning_rate": 1.992546151641322e-06,
|
159 |
-
"loss": 2.4781,
|
160 |
-
"step": 17
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"epoch": 0.9230769230769231,
|
164 |
-
"grad_norm": 13.695003509521484,
|
165 |
-
"learning_rate": 1.99026806874157e-06,
|
166 |
-
"loss": 2.4198,
|
167 |
-
"step": 18
|
168 |
-
},
|
169 |
-
{
|
170 |
-
"epoch": 0.9743589743589743,
|
171 |
-
"grad_norm": 13.504029273986816,
|
172 |
-
"learning_rate": 1.9876883405951377e-06,
|
173 |
-
"loss": 2.4088,
|
174 |
-
"step": 19
|
175 |
-
},
|
176 |
-
{
|
177 |
-
"epoch": 1.0256410256410255,
|
178 |
-
"grad_norm": 16.270732879638672,
|
179 |
-
"learning_rate": 1.984807753012208e-06,
|
180 |
-
"loss": 2.4553,
|
181 |
-
"step": 20
|
182 |
-
},
|
183 |
-
{
|
184 |
-
"epoch": 1.0256410256410255,
|
185 |
-
"eval_loss": 2.281332015991211,
|
186 |
-
"eval_runtime": 0.1875,
|
187 |
-
"eval_samples_per_second": 165.302,
|
188 |
-
"eval_steps_per_second": 26.662,
|
189 |
-
"step": 20
|
190 |
-
},
|
191 |
-
{
|
192 |
-
"epoch": 1.0384615384615385,
|
193 |
-
"grad_norm": 13.558752059936523,
|
194 |
-
"learning_rate": 1.981627183447664e-06,
|
195 |
-
"loss": 2.3328,
|
196 |
-
"step": 21
|
197 |
-
},
|
198 |
-
{
|
199 |
-
"epoch": 1.0897435897435896,
|
200 |
-
"grad_norm": 13.454627990722656,
|
201 |
-
"learning_rate": 1.9781476007338054e-06,
|
202 |
-
"loss": 2.3366,
|
203 |
-
"step": 22
|
204 |
-
},
|
205 |
-
{
|
206 |
-
"epoch": 1.141025641025641,
|
207 |
-
"grad_norm": 14.2904052734375,
|
208 |
-
"learning_rate": 1.9743700647852355e-06,
|
209 |
-
"loss": 2.174,
|
210 |
-
"step": 23
|
211 |
-
},
|
212 |
-
{
|
213 |
-
"epoch": 1.1923076923076923,
|
214 |
-
"grad_norm": 13.595693588256836,
|
215 |
-
"learning_rate": 1.9702957262759963e-06,
|
216 |
-
"loss": 2.2358,
|
217 |
-
"step": 24
|
218 |
-
},
|
219 |
-
{
|
220 |
-
"epoch": 1.2435897435897436,
|
221 |
-
"grad_norm": 12.418634414672852,
|
222 |
-
"learning_rate": 1.965925826289068e-06,
|
223 |
-
"loss": 2.2344,
|
224 |
-
"step": 25
|
225 |
-
},
|
226 |
-
{
|
227 |
-
"epoch": 1.2435897435897436,
|
228 |
-
"eval_loss": 2.233912467956543,
|
229 |
-
"eval_runtime": 0.1904,
|
230 |
-
"eval_samples_per_second": 162.822,
|
231 |
-
"eval_steps_per_second": 26.262,
|
232 |
-
"step": 25
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"epoch": 1.294871794871795,
|
236 |
-
"grad_norm": 15.914401054382324,
|
237 |
-
"learning_rate": 1.9612616959383188e-06,
|
238 |
-
"loss": 2.259,
|
239 |
-
"step": 26
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"epoch": 1.3461538461538463,
|
243 |
-
"grad_norm": 12.605673789978027,
|
244 |
-
"learning_rate": 1.9563047559630356e-06,
|
245 |
-
"loss": 2.0799,
|
246 |
-
"step": 27
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"epoch": 1.3974358974358974,
|
250 |
-
"grad_norm": 13.526497840881348,
|
251 |
-
"learning_rate": 1.9510565162951534e-06,
|
252 |
-
"loss": 2.1993,
|
253 |
-
"step": 28
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"epoch": 1.4487179487179487,
|
257 |
-
"grad_norm": 12.563177108764648,
|
258 |
-
"learning_rate": 1.945518575599317e-06,
|
259 |
-
"loss": 2.2513,
|
260 |
-
"step": 29
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"epoch": 1.5,
|
264 |
-
"grad_norm": 12.170258522033691,
|
265 |
-
"learning_rate": 1.9396926207859082e-06,
|
266 |
-
"loss": 2.4562,
|
267 |
-
"step": 30
|
268 |
-
},
|
269 |
-
{
|
270 |
-
"epoch": 1.5,
|
271 |
-
"eval_loss": 2.2017483711242676,
|
272 |
-
"eval_runtime": 0.1881,
|
273 |
-
"eval_samples_per_second": 164.78,
|
274 |
-
"eval_steps_per_second": 26.577,
|
275 |
-
"step": 30
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"epoch": 1.5512820512820513,
|
279 |
-
"grad_norm": 13.118155479431152,
|
280 |
-
"learning_rate": 1.9335804264972015e-06,
|
281 |
-
"loss": 2.1825,
|
282 |
-
"step": 31
|
283 |
-
},
|
284 |
-
{
|
285 |
-
"epoch": 1.6025641025641026,
|
286 |
-
"grad_norm": 13.182004928588867,
|
287 |
-
"learning_rate": 1.9271838545667875e-06,
|
288 |
-
"loss": 2.2352,
|
289 |
-
"step": 32
|
290 |
-
},
|
291 |
-
{
|
292 |
-
"epoch": 1.6538461538461537,
|
293 |
-
"grad_norm": 14.191438674926758,
|
294 |
-
"learning_rate": 1.9205048534524403e-06,
|
295 |
-
"loss": 2.2883,
|
296 |
-
"step": 33
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"epoch": 1.7051282051282053,
|
300 |
-
"grad_norm": 13.125994682312012,
|
301 |
-
"learning_rate": 1.9135454576426007e-06,
|
302 |
-
"loss": 2.204,
|
303 |
-
"step": 34
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"epoch": 1.7564102564102564,
|
307 |
-
"grad_norm": 13.099204063415527,
|
308 |
-
"learning_rate": 1.9063077870366499e-06,
|
309 |
-
"loss": 2.0943,
|
310 |
-
"step": 35
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"epoch": 1.7564102564102564,
|
314 |
-
"eval_loss": 2.1725800037384033,
|
315 |
-
"eval_runtime": 0.1875,
|
316 |
-
"eval_samples_per_second": 165.319,
|
317 |
-
"eval_steps_per_second": 26.664,
|
318 |
-
"step": 35
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"epoch": 1.8076923076923077,
|
322 |
-
"grad_norm": 12.349153518676758,
|
323 |
-
"learning_rate": 1.8987940462991669e-06,
|
324 |
-
"loss": 2.2073,
|
325 |
-
"step": 36
|
326 |
-
},
|
327 |
-
{
|
328 |
-
"epoch": 1.858974358974359,
|
329 |
-
"grad_norm": 12.74866008758545,
|
330 |
-
"learning_rate": 1.8910065241883678e-06,
|
331 |
-
"loss": 2.2062,
|
332 |
-
"step": 37
|
333 |
-
},
|
334 |
-
{
|
335 |
-
"epoch": 1.9102564102564101,
|
336 |
-
"grad_norm": 10.330320358276367,
|
337 |
-
"learning_rate": 1.8829475928589268e-06,
|
338 |
-
"loss": 2.0004,
|
339 |
-
"step": 38
|
340 |
-
},
|
341 |
-
{
|
342 |
-
"epoch": 1.9615384615384617,
|
343 |
-
"grad_norm": 13.375683784484863,
|
344 |
-
"learning_rate": 1.8746197071393956e-06,
|
345 |
-
"loss": 1.9728,
|
346 |
-
"step": 39
|
347 |
-
},
|
348 |
-
{
|
349 |
-
"epoch": 2.0128205128205128,
|
350 |
-
"grad_norm": 13.092984199523926,
|
351 |
-
"learning_rate": 1.8660254037844386e-06,
|
352 |
-
"loss": 2.0695,
|
353 |
-
"step": 40
|
354 |
-
},
|
355 |
-
{
|
356 |
-
"epoch": 2.0128205128205128,
|
357 |
-
"eval_loss": 2.1425397396087646,
|
358 |
-
"eval_runtime": 0.1884,
|
359 |
-
"eval_samples_per_second": 164.566,
|
360 |
-
"eval_steps_per_second": 26.543,
|
361 |
-
"step": 40
|
362 |
-
},
|
363 |
-
{
|
364 |
-
"epoch": 2.0256410256410255,
|
365 |
-
"grad_norm": 12.576122283935547,
|
366 |
-
"learning_rate": 1.8571673007021123e-06,
|
367 |
-
"loss": 2.0414,
|
368 |
-
"step": 41
|
369 |
-
},
|
370 |
-
{
|
371 |
-
"epoch": 2.076923076923077,
|
372 |
-
"grad_norm": 13.123306274414062,
|
373 |
-
"learning_rate": 1.8480480961564257e-06,
|
374 |
-
"loss": 2.1836,
|
375 |
-
"step": 42
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"epoch": 2.128205128205128,
|
379 |
-
"grad_norm": 11.772199630737305,
|
380 |
-
"learning_rate": 1.838670567945424e-06,
|
381 |
-
"loss": 2.0555,
|
382 |
-
"step": 43
|
383 |
-
},
|
384 |
-
{
|
385 |
-
"epoch": 2.1794871794871793,
|
386 |
-
"grad_norm": 12.407557487487793,
|
387 |
-
"learning_rate": 1.8290375725550415e-06,
|
388 |
-
"loss": 1.9841,
|
389 |
-
"step": 44
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"epoch": 2.230769230769231,
|
393 |
-
"grad_norm": 10.64401626586914,
|
394 |
-
"learning_rate": 1.8191520442889917e-06,
|
395 |
-
"loss": 1.8616,
|
396 |
-
"step": 45
|
397 |
-
},
|
398 |
-
{
|
399 |
-
"epoch": 2.230769230769231,
|
400 |
-
"eval_loss": 2.117149591445923,
|
401 |
-
"eval_runtime": 0.1871,
|
402 |
-
"eval_samples_per_second": 165.686,
|
403 |
-
"eval_steps_per_second": 26.724,
|
404 |
-
"step": 45
|
405 |
-
},
|
406 |
-
{
|
407 |
-
"epoch": 2.282051282051282,
|
408 |
-
"grad_norm": 11.632575035095215,
|
409 |
-
"learning_rate": 1.8090169943749474e-06,
|
410 |
-
"loss": 1.9493,
|
411 |
-
"step": 46
|
412 |
-
},
|
413 |
-
{
|
414 |
-
"epoch": 2.3333333333333335,
|
415 |
-
"grad_norm": 13.22929573059082,
|
416 |
-
"learning_rate": 1.7986355100472927e-06,
|
417 |
-
"loss": 1.9483,
|
418 |
-
"step": 47
|
419 |
-
},
|
420 |
-
{
|
421 |
-
"epoch": 2.3846153846153846,
|
422 |
-
"grad_norm": 13.824577331542969,
|
423 |
-
"learning_rate": 1.7880107536067217e-06,
|
424 |
-
"loss": 2.0555,
|
425 |
-
"step": 48
|
426 |
-
},
|
427 |
-
{
|
428 |
-
"epoch": 2.435897435897436,
|
429 |
-
"grad_norm": 10.910252571105957,
|
430 |
-
"learning_rate": 1.7771459614569707e-06,
|
431 |
-
"loss": 2.1374,
|
432 |
-
"step": 49
|
433 |
-
},
|
434 |
-
{
|
435 |
-
"epoch": 2.4871794871794872,
|
436 |
-
"grad_norm": 13.26654052734375,
|
437 |
-
"learning_rate": 1.766044443118978e-06,
|
438 |
-
"loss": 2.0498,
|
439 |
-
"step": 50
|
440 |
-
},
|
441 |
-
{
|
442 |
-
"epoch": 2.4871794871794872,
|
443 |
-
"eval_loss": 2.1040406227111816,
|
444 |
-
"eval_runtime": 0.1886,
|
445 |
-
"eval_samples_per_second": 164.403,
|
446 |
-
"eval_steps_per_second": 26.517,
|
447 |
-
"step": 50
|
448 |
-
},
|
449 |
-
{
|
450 |
-
"epoch": 2.5384615384615383,
|
451 |
-
"grad_norm": 11.703288078308105,
|
452 |
-
"learning_rate": 1.7547095802227721e-06,
|
453 |
-
"loss": 1.9002,
|
454 |
-
"step": 51
|
455 |
-
},
|
456 |
-
{
|
457 |
-
"epoch": 2.58974358974359,
|
458 |
-
"grad_norm": 13.835978507995605,
|
459 |
-
"learning_rate": 1.743144825477394e-06,
|
460 |
-
"loss": 1.988,
|
461 |
-
"step": 52
|
462 |
-
},
|
463 |
-
{
|
464 |
-
"epoch": 2.641025641025641,
|
465 |
-
"grad_norm": 14.295548439025879,
|
466 |
-
"learning_rate": 1.7313537016191704e-06,
|
467 |
-
"loss": 2.0443,
|
468 |
-
"step": 53
|
469 |
-
},
|
470 |
-
{
|
471 |
-
"epoch": 2.6923076923076925,
|
472 |
-
"grad_norm": 11.679184913635254,
|
473 |
-
"learning_rate": 1.719339800338651e-06,
|
474 |
-
"loss": 1.9208,
|
475 |
-
"step": 54
|
476 |
-
},
|
477 |
-
{
|
478 |
-
"epoch": 2.7435897435897436,
|
479 |
-
"grad_norm": 15.062151908874512,
|
480 |
-
"learning_rate": 1.7071067811865474e-06,
|
481 |
-
"loss": 1.9028,
|
482 |
-
"step": 55
|
483 |
-
},
|
484 |
-
{
|
485 |
-
"epoch": 2.7435897435897436,
|
486 |
-
"eval_loss": 2.098405361175537,
|
487 |
-
"eval_runtime": 0.186,
|
488 |
-
"eval_samples_per_second": 166.69,
|
489 |
-
"eval_steps_per_second": 26.886,
|
490 |
-
"step": 55
|
491 |
-
},
|
492 |
-
{
|
493 |
-
"epoch": 2.7948717948717947,
|
494 |
-
"grad_norm": 14.257363319396973,
|
495 |
-
"learning_rate": 1.6946583704589972e-06,
|
496 |
-
"loss": 1.9604,
|
497 |
-
"step": 56
|
498 |
-
},
|
499 |
-
{
|
500 |
-
"epoch": 2.8461538461538463,
|
501 |
-
"grad_norm": 12.327591896057129,
|
502 |
-
"learning_rate": 1.6819983600624985e-06,
|
503 |
-
"loss": 1.9919,
|
504 |
-
"step": 57
|
505 |
-
},
|
506 |
-
{
|
507 |
-
"epoch": 2.8974358974358974,
|
508 |
-
"grad_norm": 14.447932243347168,
|
509 |
-
"learning_rate": 1.669130606358858e-06,
|
510 |
-
"loss": 1.9196,
|
511 |
-
"step": 58
|
512 |
-
},
|
513 |
-
{
|
514 |
-
"epoch": 2.948717948717949,
|
515 |
-
"grad_norm": 12.253332138061523,
|
516 |
-
"learning_rate": 1.6560590289905071e-06,
|
517 |
-
"loss": 1.8955,
|
518 |
-
"step": 59
|
519 |
-
},
|
520 |
-
{
|
521 |
-
"epoch": 3.0,
|
522 |
-
"grad_norm": 14.021129608154297,
|
523 |
-
"learning_rate": 1.6427876096865393e-06,
|
524 |
-
"loss": 1.9057,
|
525 |
-
"step": 60
|
526 |
-
},
|
527 |
-
{
|
528 |
-
"epoch": 3.0,
|
529 |
-
"eval_loss": 2.084063768386841,
|
530 |
-
"eval_runtime": 0.1878,
|
531 |
-
"eval_samples_per_second": 165.031,
|
532 |
-
"eval_steps_per_second": 26.618,
|
533 |
-
"step": 60
|
534 |
-
},
|
535 |
-
{
|
536 |
-
"epoch": 3.0128205128205128,
|
537 |
-
"grad_norm": 12.585602760314941,
|
538 |
-
"learning_rate": 1.6293203910498375e-06,
|
539 |
-
"loss": 1.9736,
|
540 |
-
"step": 61
|
541 |
-
},
|
542 |
-
{
|
543 |
-
"epoch": 3.064102564102564,
|
544 |
-
"grad_norm": 12.412880897521973,
|
545 |
-
"learning_rate": 1.615661475325658e-06,
|
546 |
-
"loss": 1.906,
|
547 |
-
"step": 62
|
548 |
-
},
|
549 |
-
{
|
550 |
-
"epoch": 3.1153846153846154,
|
551 |
-
"grad_norm": 12.772639274597168,
|
552 |
-
"learning_rate": 1.6018150231520484e-06,
|
553 |
-
"loss": 1.8674,
|
554 |
-
"step": 63
|
555 |
-
},
|
556 |
-
{
|
557 |
-
"epoch": 3.1666666666666665,
|
558 |
-
"grad_norm": 9.931306838989258,
|
559 |
-
"learning_rate": 1.587785252292473e-06,
|
560 |
-
"loss": 1.8862,
|
561 |
-
"step": 64
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"epoch": 3.217948717948718,
|
565 |
-
"grad_norm": 13.5899658203125,
|
566 |
-
"learning_rate": 1.573576436351046e-06,
|
567 |
-
"loss": 1.7464,
|
568 |
-
"step": 65
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"epoch": 3.217948717948718,
|
572 |
-
"eval_loss": 2.078381061553955,
|
573 |
-
"eval_runtime": 0.1867,
|
574 |
-
"eval_samples_per_second": 166.085,
|
575 |
-
"eval_steps_per_second": 26.788,
|
576 |
-
"step": 65
|
577 |
-
},
|
578 |
-
{
|
579 |
-
"epoch": 3.269230769230769,
|
580 |
-
"grad_norm": 11.722041130065918,
|
581 |
-
"learning_rate": 1.5591929034707466e-06,
|
582 |
-
"loss": 1.8595,
|
583 |
-
"step": 66
|
584 |
-
},
|
585 |
-
{
|
586 |
-
"epoch": 3.3205128205128207,
|
587 |
-
"grad_norm": 12.511164665222168,
|
588 |
-
"learning_rate": 1.544639035015027e-06,
|
589 |
-
"loss": 1.8445,
|
590 |
-
"step": 67
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"epoch": 3.371794871794872,
|
594 |
-
"grad_norm": 15.670218467712402,
|
595 |
-
"learning_rate": 1.5299192642332049e-06,
|
596 |
-
"loss": 1.8044,
|
597 |
-
"step": 68
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"epoch": 3.423076923076923,
|
601 |
-
"grad_norm": 12.341389656066895,
|
602 |
-
"learning_rate": 1.5150380749100543e-06,
|
603 |
-
"loss": 1.811,
|
604 |
-
"step": 69
|
605 |
-
},
|
606 |
-
{
|
607 |
-
"epoch": 3.4743589743589745,
|
608 |
-
"grad_norm": 13.361737251281738,
|
609 |
-
"learning_rate": 1.5e-06,
|
610 |
-
"loss": 1.8284,
|
611 |
-
"step": 70
|
612 |
-
},
|
613 |
-
{
|
614 |
-
"epoch": 3.4743589743589745,
|
615 |
-
"eval_loss": 2.078845500946045,
|
616 |
-
"eval_runtime": 0.1879,
|
617 |
-
"eval_samples_per_second": 164.946,
|
618 |
-
"eval_steps_per_second": 26.604,
|
619 |
-
"step": 70
|
620 |
-
},
|
621 |
-
{
|
622 |
-
"epoch": 3.5256410256410255,
|
623 |
-
"grad_norm": 14.585214614868164,
|
624 |
-
"learning_rate": 1.4848096202463372e-06,
|
625 |
-
"loss": 1.7391,
|
626 |
-
"step": 71
|
627 |
-
},
|
628 |
-
{
|
629 |
-
"epoch": 3.5769230769230766,
|
630 |
-
"grad_norm": 11.4587984085083,
|
631 |
-
"learning_rate": 1.4694715627858908e-06,
|
632 |
-
"loss": 1.8459,
|
633 |
-
"step": 72
|
634 |
-
},
|
635 |
-
{
|
636 |
-
"epoch": 3.628205128205128,
|
637 |
-
"grad_norm": 14.638727188110352,
|
638 |
-
"learning_rate": 1.4539904997395467e-06,
|
639 |
-
"loss": 1.814,
|
640 |
-
"step": 73
|
641 |
-
},
|
642 |
-
{
|
643 |
-
"epoch": 3.6794871794871797,
|
644 |
-
"grad_norm": 15.081775665283203,
|
645 |
-
"learning_rate": 1.4383711467890773e-06,
|
646 |
-
"loss": 1.9079,
|
647 |
-
"step": 74
|
648 |
-
},
|
649 |
-
{
|
650 |
-
"epoch": 3.730769230769231,
|
651 |
-
"grad_norm": 12.757416725158691,
|
652 |
-
"learning_rate": 1.4226182617406994e-06,
|
653 |
-
"loss": 1.8866,
|
654 |
-
"step": 75
|
655 |
-
},
|
656 |
-
{
|
657 |
-
"epoch": 3.730769230769231,
|
658 |
-
"eval_loss": 2.0760610103607178,
|
659 |
-
"eval_runtime": 0.1867,
|
660 |
-
"eval_samples_per_second": 166.063,
|
661 |
-
"eval_steps_per_second": 26.784,
|
662 |
-
"step": 75
|
663 |
-
},
|
664 |
-
{
|
665 |
-
"epoch": 3.782051282051282,
|
666 |
-
"grad_norm": 14.678832054138184,
|
667 |
-
"learning_rate": 1.4067366430758004e-06,
|
668 |
-
"loss": 1.7503,
|
669 |
-
"step": 76
|
670 |
-
},
|
671 |
-
{
|
672 |
-
"epoch": 3.8333333333333335,
|
673 |
-
"grad_norm": 15.981603622436523,
|
674 |
-
"learning_rate": 1.3907311284892735e-06,
|
675 |
-
"loss": 1.7984,
|
676 |
-
"step": 77
|
677 |
-
},
|
678 |
-
{
|
679 |
-
"epoch": 3.8846153846153846,
|
680 |
-
"grad_norm": 14.856511116027832,
|
681 |
-
"learning_rate": 1.374606593415912e-06,
|
682 |
-
"loss": 1.7843,
|
683 |
-
"step": 78
|
684 |
-
},
|
685 |
-
{
|
686 |
-
"epoch": 3.935897435897436,
|
687 |
-
"grad_norm": 14.275514602661133,
|
688 |
-
"learning_rate": 1.3583679495453e-06,
|
689 |
-
"loss": 1.7888,
|
690 |
-
"step": 79
|
691 |
-
},
|
692 |
-
{
|
693 |
-
"epoch": 3.9871794871794872,
|
694 |
-
"grad_norm": 12.734882354736328,
|
695 |
-
"learning_rate": 1.3420201433256689e-06,
|
696 |
-
"loss": 1.8927,
|
697 |
-
"step": 80
|
698 |
-
},
|
699 |
-
{
|
700 |
-
"epoch": 3.9871794871794872,
|
701 |
-
"eval_loss": 2.067340135574341,
|
702 |
-
"eval_runtime": 0.1861,
|
703 |
-
"eval_samples_per_second": 166.583,
|
704 |
-
"eval_steps_per_second": 26.868,
|
705 |
-
"step": 80
|
706 |
-
},
|
707 |
-
{
|
708 |
-
"epoch": 4.038461538461538,
|
709 |
-
"grad_norm": 14.663799285888672,
|
710 |
-
"learning_rate": 1.3255681544571566e-06,
|
711 |
-
"loss": 1.7531,
|
712 |
-
"step": 81
|
713 |
-
},
|
714 |
-
{
|
715 |
-
"epoch": 4.051282051282051,
|
716 |
-
"grad_norm": 12.570903778076172,
|
717 |
-
"learning_rate": 1.3090169943749473e-06,
|
718 |
-
"loss": 1.7588,
|
719 |
-
"step": 82
|
720 |
-
},
|
721 |
-
{
|
722 |
-
"epoch": 4.102564102564102,
|
723 |
-
"grad_norm": 11.108199119567871,
|
724 |
-
"learning_rate": 1.2923717047227368e-06,
|
725 |
-
"loss": 1.6173,
|
726 |
-
"step": 83
|
727 |
-
},
|
728 |
-
{
|
729 |
-
"epoch": 4.153846153846154,
|
730 |
-
"grad_norm": 14.328954696655273,
|
731 |
-
"learning_rate": 1.275637355816999e-06,
|
732 |
-
"loss": 1.7411,
|
733 |
-
"step": 84
|
734 |
-
},
|
735 |
-
{
|
736 |
-
"epoch": 4.205128205128205,
|
737 |
-
"grad_norm": 14.140481948852539,
|
738 |
-
"learning_rate": 1.2588190451025207e-06,
|
739 |
-
"loss": 1.5778,
|
740 |
-
"step": 85
|
741 |
-
},
|
742 |
-
{
|
743 |
-
"epoch": 4.205128205128205,
|
744 |
-
"eval_loss": 2.0778791904449463,
|
745 |
-
"eval_runtime": 0.1891,
|
746 |
-
"eval_samples_per_second": 163.917,
|
747 |
-
"eval_steps_per_second": 26.438,
|
748 |
-
"step": 85
|
749 |
-
},
|
750 |
-
{
|
751 |
-
"epoch": 4.256410256410256,
|
752 |
-
"grad_norm": 13.933786392211914,
|
753 |
-
"learning_rate": 1.2419218955996676e-06,
|
754 |
-
"loss": 1.5578,
|
755 |
-
"step": 86
|
756 |
-
},
|
757 |
-
{
|
758 |
-
"epoch": 4.3076923076923075,
|
759 |
-
"grad_norm": 16.1457462310791,
|
760 |
-
"learning_rate": 1.2249510543438651e-06,
|
761 |
-
"loss": 1.6873,
|
762 |
-
"step": 87
|
763 |
-
},
|
764 |
-
{
|
765 |
-
"epoch": 4.358974358974359,
|
766 |
-
"grad_norm": 16.26984977722168,
|
767 |
-
"learning_rate": 1.207911690817759e-06,
|
768 |
-
"loss": 1.6605,
|
769 |
-
"step": 88
|
770 |
-
},
|
771 |
-
{
|
772 |
-
"epoch": 4.410256410256411,
|
773 |
-
"grad_norm": 19.391223907470703,
|
774 |
-
"learning_rate": 1.1908089953765447e-06,
|
775 |
-
"loss": 1.6272,
|
776 |
-
"step": 89
|
777 |
-
},
|
778 |
-
{
|
779 |
-
"epoch": 4.461538461538462,
|
780 |
-
"grad_norm": 19.38517951965332,
|
781 |
-
"learning_rate": 1.1736481776669305e-06,
|
782 |
-
"loss": 1.7274,
|
783 |
-
"step": 90
|
784 |
-
},
|
785 |
-
{
|
786 |
-
"epoch": 4.461538461538462,
|
787 |
-
"eval_loss": 2.0934271812438965,
|
788 |
-
"eval_runtime": 0.1874,
|
789 |
-
"eval_samples_per_second": 165.396,
|
790 |
-
"eval_steps_per_second": 26.677,
|
791 |
-
"step": 90
|
792 |
-
},
|
793 |
-
{
|
794 |
-
"epoch": 4.512820512820513,
|
795 |
-
"grad_norm": 16.367389678955078,
|
796 |
-
"learning_rate": 1.156434465040231e-06,
|
797 |
-
"loss": 1.8406,
|
798 |
-
"step": 91
|
799 |
-
},
|
800 |
-
{
|
801 |
-
"epoch": 4.564102564102564,
|
802 |
-
"grad_norm": 18.22227668762207,
|
803 |
-
"learning_rate": 1.1391731009600653e-06,
|
804 |
-
"loss": 1.7469,
|
805 |
-
"step": 92
|
806 |
-
},
|
807 |
-
{
|
808 |
-
"epoch": 4.615384615384615,
|
809 |
-
"grad_norm": 14.44421100616455,
|
810 |
-
"learning_rate": 1.1218693434051474e-06,
|
811 |
-
"loss": 1.5867,
|
812 |
-
"step": 93
|
813 |
-
},
|
814 |
-
{
|
815 |
-
"epoch": 4.666666666666667,
|
816 |
-
"grad_norm": 13.295368194580078,
|
817 |
-
"learning_rate": 1.1045284632676535e-06,
|
818 |
-
"loss": 1.7081,
|
819 |
-
"step": 94
|
820 |
-
},
|
821 |
-
{
|
822 |
-
"epoch": 4.717948717948718,
|
823 |
-
"grad_norm": 15.499272346496582,
|
824 |
-
"learning_rate": 1.0871557427476583e-06,
|
825 |
-
"loss": 1.7431,
|
826 |
-
"step": 95
|
827 |
-
},
|
828 |
-
{
|
829 |
-
"epoch": 4.717948717948718,
|
830 |
-
"eval_loss": 2.065159559249878,
|
831 |
-
"eval_runtime": 0.1863,
|
832 |
-
"eval_samples_per_second": 166.408,
|
833 |
-
"eval_steps_per_second": 26.84,
|
834 |
-
"step": 95
|
835 |
-
},
|
836 |
-
{
|
837 |
-
"epoch": 4.769230769230769,
|
838 |
-
"grad_norm": 15.949275016784668,
|
839 |
-
"learning_rate": 1.069756473744125e-06,
|
840 |
-
"loss": 1.6641,
|
841 |
-
"step": 96
|
842 |
-
},
|
843 |
-
{
|
844 |
-
"epoch": 4.82051282051282,
|
845 |
-
"grad_norm": 13.781301498413086,
|
846 |
-
"learning_rate": 1.052335956242944e-06,
|
847 |
-
"loss": 1.5421,
|
848 |
-
"step": 97
|
849 |
-
},
|
850 |
-
{
|
851 |
-
"epoch": 4.871794871794872,
|
852 |
-
"grad_norm": 16.268604278564453,
|
853 |
-
"learning_rate": 1.034899496702501e-06,
|
854 |
-
"loss": 1.7906,
|
855 |
-
"step": 98
|
856 |
-
},
|
857 |
-
{
|
858 |
-
"epoch": 4.923076923076923,
|
859 |
-
"grad_norm": 12.881053924560547,
|
860 |
-
"learning_rate": 1.0174524064372837e-06,
|
861 |
-
"loss": 1.7359,
|
862 |
-
"step": 99
|
863 |
-
},
|
864 |
-
{
|
865 |
-
"epoch": 4.9743589743589745,
|
866 |
-
"grad_norm": 15.596150398254395,
|
867 |
-
"learning_rate": 1e-06,
|
868 |
-
"loss": 1.8728,
|
869 |
-
"step": 100
|
870 |
-
},
|
871 |
-
{
|
872 |
-
"epoch": 4.9743589743589745,
|
873 |
-
"eval_loss": 2.0617754459381104,
|
874 |
-
"eval_runtime": 0.1875,
|
875 |
-
"eval_samples_per_second": 165.345,
|
876 |
-
"eval_steps_per_second": 26.668,
|
877 |
-
"step": 100
|
878 |
-
},
|
879 |
-
{
|
880 |
-
"epoch": 5.0256410256410255,
|
881 |
-
"grad_norm": 16.61153221130371,
|
882 |
-
"learning_rate": 9.825475935627165e-07,
|
883 |
-
"loss": 1.6729,
|
884 |
-
"step": 101
|
885 |
-
},
|
886 |
-
{
|
887 |
-
"epoch": 5.038461538461538,
|
888 |
-
"grad_norm": 13.130430221557617,
|
889 |
-
"learning_rate": 9.651005032974993e-07,
|
890 |
-
"loss": 1.6707,
|
891 |
-
"step": 102
|
892 |
-
},
|
893 |
-
{
|
894 |
-
"epoch": 5.089743589743589,
|
895 |
-
"grad_norm": 14.977300643920898,
|
896 |
-
"learning_rate": 9.476640437570561e-07,
|
897 |
-
"loss": 1.5516,
|
898 |
-
"step": 103
|
899 |
-
},
|
900 |
-
{
|
901 |
-
"epoch": 5.141025641025641,
|
902 |
-
"grad_norm": 17.314029693603516,
|
903 |
-
"learning_rate": 9.302435262558747e-07,
|
904 |
-
"loss": 1.6449,
|
905 |
-
"step": 104
|
906 |
-
},
|
907 |
-
{
|
908 |
-
"epoch": 5.1923076923076925,
|
909 |
-
"grad_norm": 15.75112247467041,
|
910 |
-
"learning_rate": 9.128442572523417e-07,
|
911 |
-
"loss": 1.5729,
|
912 |
-
"step": 105
|
913 |
-
},
|
914 |
-
{
|
915 |
-
"epoch": 5.1923076923076925,
|
916 |
-
"eval_loss": 2.083660125732422,
|
917 |
-
"eval_runtime": 0.187,
|
918 |
-
"eval_samples_per_second": 165.747,
|
919 |
-
"eval_steps_per_second": 26.733,
|
920 |
-
"step": 105
|
921 |
-
},
|
922 |
-
{
|
923 |
-
"epoch": 5.243589743589744,
|
924 |
-
"grad_norm": 19.511394500732422,
|
925 |
-
"learning_rate": 8.954715367323466e-07,
|
926 |
-
"loss": 1.5756,
|
927 |
-
"step": 106
|
928 |
-
},
|
929 |
-
{
|
930 |
-
"epoch": 5.294871794871795,
|
931 |
-
"grad_norm": 16.741764068603516,
|
932 |
-
"learning_rate": 8.781306565948526e-07,
|
933 |
-
"loss": 1.6627,
|
934 |
-
"step": 107
|
935 |
-
},
|
936 |
-
{
|
937 |
-
"epoch": 5.346153846153846,
|
938 |
-
"grad_norm": 16.6429443359375,
|
939 |
-
"learning_rate": 8.608268990399348e-07,
|
940 |
-
"loss": 1.6097,
|
941 |
-
"step": 108
|
942 |
-
},
|
943 |
-
{
|
944 |
-
"epoch": 5.397435897435898,
|
945 |
-
"grad_norm": 22.457843780517578,
|
946 |
-
"learning_rate": 8.435655349597689e-07,
|
947 |
-
"loss": 1.6192,
|
948 |
-
"step": 109
|
949 |
-
},
|
950 |
-
{
|
951 |
-
"epoch": 5.448717948717949,
|
952 |
-
"grad_norm": 13.546624183654785,
|
953 |
-
"learning_rate": 8.263518223330696e-07,
|
954 |
-
"loss": 1.4631,
|
955 |
-
"step": 110
|
956 |
-
},
|
957 |
-
{
|
958 |
-
"epoch": 5.448717948717949,
|
959 |
-
"eval_loss": 2.087294816970825,
|
960 |
-
"eval_runtime": 0.1887,
|
961 |
-
"eval_samples_per_second": 164.276,
|
962 |
-
"eval_steps_per_second": 26.496,
|
963 |
-
"step": 110
|
964 |
-
},
|
965 |
-
{
|
966 |
-
"epoch": 5.5,
|
967 |
-
"grad_norm": 16.943618774414062,
|
968 |
-
"learning_rate": 8.091910046234551e-07,
|
969 |
-
"loss": 1.5529,
|
970 |
-
"step": 111
|
971 |
-
},
|
972 |
-
{
|
973 |
-
"epoch": 5.551282051282051,
|
974 |
-
"grad_norm": 17.719892501831055,
|
975 |
-
"learning_rate": 7.920883091822408e-07,
|
976 |
-
"loss": 1.7165,
|
977 |
-
"step": 112
|
978 |
-
},
|
979 |
-
{
|
980 |
-
"epoch": 5.602564102564102,
|
981 |
-
"grad_norm": 14.0659818649292,
|
982 |
-
"learning_rate": 7.750489456561351e-07,
|
983 |
-
"loss": 1.5024,
|
984 |
-
"step": 113
|
985 |
-
},
|
986 |
-
{
|
987 |
-
"epoch": 5.653846153846154,
|
988 |
-
"grad_norm": 17.86212921142578,
|
989 |
-
"learning_rate": 7.580781044003324e-07,
|
990 |
-
"loss": 1.5745,
|
991 |
-
"step": 114
|
992 |
-
},
|
993 |
-
{
|
994 |
-
"epoch": 5.705128205128205,
|
995 |
-
"grad_norm": 17.252527236938477,
|
996 |
-
"learning_rate": 7.411809548974791e-07,
|
997 |
-
"loss": 1.4758,
|
998 |
-
"step": 115
|
999 |
-
},
|
1000 |
-
{
|
1001 |
-
"epoch": 5.705128205128205,
|
1002 |
-
"eval_loss": 2.074392557144165,
|
1003 |
-
"eval_runtime": 0.1875,
|
1004 |
-
"eval_samples_per_second": 165.36,
|
1005 |
-
"eval_steps_per_second": 26.671,
|
1006 |
-
"step": 115
|
1007 |
-
},
|
1008 |
-
{
|
1009 |
-
"epoch": 5.756410256410256,
|
1010 |
-
"grad_norm": 18.326730728149414,
|
1011 |
-
"learning_rate": 7.243626441830009e-07,
|
1012 |
-
"loss": 1.5874,
|
1013 |
-
"step": 116
|
1014 |
-
},
|
1015 |
-
{
|
1016 |
-
"epoch": 5.8076923076923075,
|
1017 |
-
"grad_norm": 14.133539199829102,
|
1018 |
-
"learning_rate": 7.076282952772633e-07,
|
1019 |
-
"loss": 1.4556,
|
1020 |
-
"step": 117
|
1021 |
-
},
|
1022 |
-
{
|
1023 |
-
"epoch": 5.858974358974359,
|
1024 |
-
"grad_norm": 16.187454223632812,
|
1025 |
-
"learning_rate": 6.909830056250526e-07,
|
1026 |
-
"loss": 1.5353,
|
1027 |
-
"step": 118
|
1028 |
-
},
|
1029 |
-
{
|
1030 |
-
"epoch": 5.910256410256411,
|
1031 |
-
"grad_norm": 18.15951919555664,
|
1032 |
-
"learning_rate": 6.744318455428435e-07,
|
1033 |
-
"loss": 1.6346,
|
1034 |
-
"step": 119
|
1035 |
-
},
|
1036 |
-
{
|
1037 |
-
"epoch": 5.961538461538462,
|
1038 |
-
"grad_norm": 14.860916137695312,
|
1039 |
-
"learning_rate": 6.579798566743313e-07,
|
1040 |
-
"loss": 1.5289,
|
1041 |
-
"step": 120
|
1042 |
-
},
|
1043 |
-
{
|
1044 |
-
"epoch": 5.961538461538462,
|
1045 |
-
"eval_loss": 2.0899431705474854,
|
1046 |
-
"eval_runtime": 0.1896,
|
1047 |
-
"eval_samples_per_second": 163.49,
|
1048 |
-
"eval_steps_per_second": 26.369,
|
1049 |
-
"step": 120
|
1050 |
-
},
|
1051 |
-
{
|
1052 |
-
"epoch": 6.012820512820513,
|
1053 |
-
"grad_norm": 23.091646194458008,
|
1054 |
-
"learning_rate": 6.416320504546997e-07,
|
1055 |
-
"loss": 1.6633,
|
1056 |
-
"step": 121
|
1057 |
-
},
|
1058 |
-
{
|
1059 |
-
"epoch": 6.0256410256410255,
|
1060 |
-
"grad_norm": 19.409482955932617,
|
1061 |
-
"learning_rate": 6.253934065840879e-07,
|
1062 |
-
"loss": 1.6998,
|
1063 |
-
"step": 122
|
1064 |
-
},
|
1065 |
-
{
|
1066 |
-
"epoch": 6.076923076923077,
|
1067 |
-
"grad_norm": 15.723928451538086,
|
1068 |
-
"learning_rate": 6.092688715107263e-07,
|
1069 |
-
"loss": 1.5407,
|
1070 |
-
"step": 123
|
1071 |
-
},
|
1072 |
-
{
|
1073 |
-
"epoch": 6.128205128205128,
|
1074 |
-
"grad_norm": 17.410001754760742,
|
1075 |
-
"learning_rate": 5.932633569241999e-07,
|
1076 |
-
"loss": 1.4682,
|
1077 |
-
"step": 124
|
1078 |
-
},
|
1079 |
-
{
|
1080 |
-
"epoch": 6.17948717948718,
|
1081 |
-
"grad_norm": 15.949166297912598,
|
1082 |
-
"learning_rate": 5.773817382593007e-07,
|
1083 |
-
"loss": 1.515,
|
1084 |
-
"step": 125
|
1085 |
-
},
|
1086 |
-
{
|
1087 |
-
"epoch": 6.17948717948718,
|
1088 |
-
"eval_loss": 2.091871500015259,
|
1089 |
-
"eval_runtime": 0.1884,
|
1090 |
-
"eval_samples_per_second": 164.579,
|
1091 |
-
"eval_steps_per_second": 26.545,
|
1092 |
-
"step": 125
|
1093 |
-
},
|
1094 |
-
{
|
1095 |
-
"epoch": 6.230769230769231,
|
1096 |
-
"grad_norm": 19.262935638427734,
|
1097 |
-
"learning_rate": 5.616288532109224e-07,
|
1098 |
-
"loss": 1.4557,
|
1099 |
-
"step": 126
|
1100 |
-
},
|
1101 |
-
{
|
1102 |
-
"epoch": 6.282051282051282,
|
1103 |
-
"grad_norm": 18.071447372436523,
|
1104 |
-
"learning_rate": 5.460095002604532e-07,
|
1105 |
-
"loss": 1.4763,
|
1106 |
-
"step": 127
|
1107 |
-
},
|
1108 |
-
{
|
1109 |
-
"epoch": 6.333333333333333,
|
1110 |
-
"grad_norm": 14.22094440460205,
|
1111 |
-
"learning_rate": 5.305284372141095e-07,
|
1112 |
-
"loss": 1.3375,
|
1113 |
-
"step": 128
|
1114 |
-
},
|
1115 |
-
{
|
1116 |
-
"epoch": 6.384615384615385,
|
1117 |
-
"grad_norm": 19.112789154052734,
|
1118 |
-
"learning_rate": 5.15190379753663e-07,
|
1119 |
-
"loss": 1.5896,
|
1120 |
-
"step": 129
|
1121 |
-
},
|
1122 |
-
{
|
1123 |
-
"epoch": 6.435897435897436,
|
1124 |
-
"grad_norm": 19.069456100463867,
|
1125 |
-
"learning_rate": 5.000000000000002e-07,
|
1126 |
-
"loss": 1.5757,
|
1127 |
-
"step": 130
|
1128 |
-
},
|
1129 |
-
{
|
1130 |
-
"epoch": 6.435897435897436,
|
1131 |
-
"eval_loss": 2.0978188514709473,
|
1132 |
-
"eval_runtime": 0.1888,
|
1133 |
-
"eval_samples_per_second": 164.22,
|
1134 |
-
"eval_steps_per_second": 26.487,
|
1135 |
-
"step": 130
|
1136 |
-
},
|
1137 |
-
{
|
1138 |
-
"epoch": 6.487179487179487,
|
1139 |
-
"grad_norm": 16.8870792388916,
|
1140 |
-
"learning_rate": 4.849619250899458e-07,
|
1141 |
-
"loss": 1.4204,
|
1142 |
-
"step": 131
|
1143 |
-
},
|
1144 |
-
{
|
1145 |
-
"epoch": 6.538461538461538,
|
1146 |
-
"grad_norm": 20.033496856689453,
|
1147 |
-
"learning_rate": 4.700807357667952e-07,
|
1148 |
-
"loss": 1.6698,
|
1149 |
-
"step": 132
|
1150 |
-
},
|
1151 |
-
{
|
1152 |
-
"epoch": 6.589743589743589,
|
1153 |
-
"grad_norm": 18.386215209960938,
|
1154 |
-
"learning_rate": 4.5536096498497287e-07,
|
1155 |
-
"loss": 1.4692,
|
1156 |
-
"step": 133
|
1157 |
-
}
|
1158 |
-
],
|
1159 |
-
"logging_steps": 1,
|
1160 |
-
"max_steps": 190,
|
1161 |
-
"num_input_tokens_seen": 0,
|
1162 |
-
"num_train_epochs": 10,
|
1163 |
-
"save_steps": 19,
|
1164 |
-
"total_flos": 1.733580238744453e+17,
|
1165 |
-
"train_batch_size": 1,
|
1166 |
-
"trial_name": null,
|
1167 |
-
"trial_params": null
|
1168 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ce72091dce0ea28ac196361628c1a02850c1deca0e74750094a85a7cd1de57af
|
3 |
-
size 7096
|
|
|
|
|
|
|
|
https:/huggingface.co/esunn/1min-v2-luxia-8b/zero_to_fp32.py
DELETED
@@ -1,604 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# SPDX-License-Identifier: Apache-2.0
|
5 |
-
|
6 |
-
# DeepSpeed Team
|
7 |
-
|
8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
-
# application.
|
12 |
-
#
|
13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
-
|
15 |
-
import argparse
|
16 |
-
import torch
|
17 |
-
import glob
|
18 |
-
import math
|
19 |
-
import os
|
20 |
-
import re
|
21 |
-
from collections import OrderedDict
|
22 |
-
from dataclasses import dataclass
|
23 |
-
|
24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
-
from deepspeed.utils import logger
|
27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
-
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class zero_model_state:
|
34 |
-
buffers: dict()
|
35 |
-
param_shapes: dict()
|
36 |
-
shared_params: list
|
37 |
-
ds_version: int
|
38 |
-
frozen_param_shapes: dict()
|
39 |
-
frozen_param_fragments: dict()
|
40 |
-
|
41 |
-
|
42 |
-
debug = 0
|
43 |
-
|
44 |
-
# load to cpu
|
45 |
-
device = torch.device('cpu')
|
46 |
-
|
47 |
-
|
48 |
-
def atoi(text):
|
49 |
-
return int(text) if text.isdigit() else text
|
50 |
-
|
51 |
-
|
52 |
-
def natural_keys(text):
|
53 |
-
'''
|
54 |
-
alist.sort(key=natural_keys) sorts in human order
|
55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
-
(See Toothy's implementation in the comments)
|
57 |
-
'''
|
58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
-
|
60 |
-
|
61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
-
if not os.path.isdir(checkpoint_dir):
|
63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
-
|
65 |
-
# there should be only one file
|
66 |
-
if zero_stage <= 2:
|
67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
-
elif zero_stage == 3:
|
69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
-
|
71 |
-
if not os.path.exists(file):
|
72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
-
|
74 |
-
return file
|
75 |
-
|
76 |
-
|
77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
-
|
81 |
-
if len(ckpt_files) == 0:
|
82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
-
|
84 |
-
return ckpt_files
|
85 |
-
|
86 |
-
|
87 |
-
def get_optim_files(checkpoint_dir):
|
88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
-
|
90 |
-
|
91 |
-
def get_model_state_files(checkpoint_dir):
|
92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
-
|
94 |
-
|
95 |
-
def parse_model_states(files):
|
96 |
-
zero_model_states = []
|
97 |
-
for file in files:
|
98 |
-
state_dict = torch.load(file, map_location=device)
|
99 |
-
|
100 |
-
if BUFFER_NAMES not in state_dict:
|
101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
-
if debug:
|
104 |
-
print("Found buffers:", buffer_names)
|
105 |
-
|
106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
-
|
110 |
-
# collect parameters that are included in param_shapes
|
111 |
-
param_names = []
|
112 |
-
for s in param_shapes:
|
113 |
-
for name in s.keys():
|
114 |
-
param_names.append(name)
|
115 |
-
|
116 |
-
# update with frozen parameters
|
117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
-
if frozen_param_shapes is not None:
|
119 |
-
if debug:
|
120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
-
param_names += list(frozen_param_shapes.keys())
|
122 |
-
|
123 |
-
# handle shared params
|
124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
-
|
126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
-
|
128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
-
|
130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
131 |
-
param_shapes=param_shapes,
|
132 |
-
shared_params=shared_params,
|
133 |
-
ds_version=ds_version,
|
134 |
-
frozen_param_shapes=frozen_param_shapes,
|
135 |
-
frozen_param_fragments=frozen_param_fragments)
|
136 |
-
zero_model_states.append(z_model_state)
|
137 |
-
|
138 |
-
return zero_model_states
|
139 |
-
|
140 |
-
|
141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
-
|
143 |
-
total_files = len(files)
|
144 |
-
state_dicts = []
|
145 |
-
for f in files:
|
146 |
-
state_dict = torch.load(f, map_location=device)
|
147 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
-
# and also handle the case where it was already removed by another helper script
|
149 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
-
state_dicts.append(state_dict)
|
151 |
-
|
152 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
-
|
157 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
-
# use the max of the partition_count to get the dp world_size.
|
160 |
-
|
161 |
-
if type(world_size) is list:
|
162 |
-
world_size = max(world_size)
|
163 |
-
|
164 |
-
if world_size != total_files:
|
165 |
-
raise ValueError(
|
166 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
-
)
|
169 |
-
|
170 |
-
# the groups are named differently in each stage
|
171 |
-
if zero_stage <= 2:
|
172 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
-
elif zero_stage == 3:
|
174 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
-
else:
|
176 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
-
|
178 |
-
if zero_stage <= 2:
|
179 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
-
elif zero_stage == 3:
|
181 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
-
#
|
184 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
-
|
187 |
-
fp32_flat_groups = [
|
188 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
-
]
|
190 |
-
|
191 |
-
return zero_stage, world_size, fp32_flat_groups
|
192 |
-
|
193 |
-
|
194 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
-
"""
|
196 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
-
|
198 |
-
Args:
|
199 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
-
|
201 |
-
"""
|
202 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
-
|
204 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
-
|
208 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
-
|
210 |
-
zero_model_states = parse_model_states(model_files)
|
211 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
-
|
213 |
-
if zero_stage <= 2:
|
214 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
-
exclude_frozen_parameters)
|
216 |
-
elif zero_stage == 3:
|
217 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
-
exclude_frozen_parameters)
|
219 |
-
|
220 |
-
|
221 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
-
return
|
224 |
-
|
225 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
-
|
228 |
-
if debug:
|
229 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
-
|
232 |
-
wanted_params = len(frozen_param_shapes)
|
233 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
-
|
238 |
-
total_params = 0
|
239 |
-
total_numel = 0
|
240 |
-
for name, shape in frozen_param_shapes.items():
|
241 |
-
total_params += 1
|
242 |
-
unpartitioned_numel = shape.numel()
|
243 |
-
total_numel += unpartitioned_numel
|
244 |
-
|
245 |
-
state_dict[name] = frozen_param_fragments[name]
|
246 |
-
|
247 |
-
if debug:
|
248 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
-
|
250 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
-
|
252 |
-
|
253 |
-
def _has_callable(obj, fn):
|
254 |
-
attr = getattr(obj, fn, None)
|
255 |
-
return callable(attr)
|
256 |
-
|
257 |
-
|
258 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
-
param_shapes = zero_model_states[0].param_shapes
|
260 |
-
|
261 |
-
# Reconstruction protocol:
|
262 |
-
#
|
263 |
-
# XXX: document this
|
264 |
-
|
265 |
-
if debug:
|
266 |
-
for i in range(world_size):
|
267 |
-
for j in range(len(fp32_flat_groups[0])):
|
268 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
-
|
270 |
-
# XXX: memory usage doubles here (zero2)
|
271 |
-
num_param_groups = len(fp32_flat_groups[0])
|
272 |
-
merged_single_partition_of_fp32_groups = []
|
273 |
-
for i in range(num_param_groups):
|
274 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
-
avail_numel = sum(
|
278 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
-
|
280 |
-
if debug:
|
281 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
-
# not asserting if there is a mismatch due to possible padding
|
284 |
-
print(f"Have {avail_numel} numels to process.")
|
285 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
-
|
287 |
-
# params
|
288 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
-
# out-of-core computing solution
|
290 |
-
total_numel = 0
|
291 |
-
total_params = 0
|
292 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
-
offset = 0
|
294 |
-
avail_numel = full_single_fp32_vector.numel()
|
295 |
-
for name, shape in shapes.items():
|
296 |
-
|
297 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
-
total_numel += unpartitioned_numel
|
299 |
-
total_params += 1
|
300 |
-
|
301 |
-
if debug:
|
302 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
-
offset += unpartitioned_numel
|
305 |
-
|
306 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
-
align_to = 2 * world_size
|
311 |
-
|
312 |
-
def zero2_align(x):
|
313 |
-
return align_to * math.ceil(x / align_to)
|
314 |
-
|
315 |
-
if debug:
|
316 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
-
|
318 |
-
offset = zero2_align(offset)
|
319 |
-
avail_numel = zero2_align(avail_numel)
|
320 |
-
|
321 |
-
if debug:
|
322 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
-
|
324 |
-
# Sanity check
|
325 |
-
if offset != avail_numel:
|
326 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
-
|
328 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
-
|
330 |
-
|
331 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
-
exclude_frozen_parameters):
|
333 |
-
state_dict = OrderedDict()
|
334 |
-
|
335 |
-
# buffers
|
336 |
-
buffers = zero_model_states[0].buffers
|
337 |
-
state_dict.update(buffers)
|
338 |
-
if debug:
|
339 |
-
print(f"added {len(buffers)} buffers")
|
340 |
-
|
341 |
-
if not exclude_frozen_parameters:
|
342 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
-
|
344 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
-
|
346 |
-
# recover shared parameters
|
347 |
-
for pair in zero_model_states[0].shared_params:
|
348 |
-
if pair[1] in state_dict:
|
349 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
-
|
351 |
-
return state_dict
|
352 |
-
|
353 |
-
|
354 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
-
remainder = unpartitioned_numel % world_size
|
356 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
-
return partitioned_numel, padding_numel
|
359 |
-
|
360 |
-
|
361 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
-
return
|
364 |
-
|
365 |
-
if debug:
|
366 |
-
for i in range(world_size):
|
367 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
-
|
370 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
-
wanted_params = len(frozen_param_shapes)
|
372 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
-
|
377 |
-
total_params = 0
|
378 |
-
total_numel = 0
|
379 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
-
total_params += 1
|
381 |
-
unpartitioned_numel = shape.numel()
|
382 |
-
total_numel += unpartitioned_numel
|
383 |
-
|
384 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
-
|
387 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
-
|
389 |
-
if debug:
|
390 |
-
print(
|
391 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
-
)
|
393 |
-
|
394 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
-
|
396 |
-
|
397 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
-
param_shapes = zero_model_states[0].param_shapes
|
399 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
-
# param, re-consolidating each param, while dealing with padding if any
|
402 |
-
|
403 |
-
# merge list of dicts, preserving order
|
404 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
-
|
406 |
-
if debug:
|
407 |
-
for i in range(world_size):
|
408 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
-
|
410 |
-
wanted_params = len(param_shapes)
|
411 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
-
# not asserting if there is a mismatch due to possible padding
|
413 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
-
|
417 |
-
# params
|
418 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
-
# out-of-core computing solution
|
420 |
-
offset = 0
|
421 |
-
total_numel = 0
|
422 |
-
total_params = 0
|
423 |
-
for name, shape in param_shapes.items():
|
424 |
-
|
425 |
-
unpartitioned_numel = shape.numel()
|
426 |
-
total_numel += unpartitioned_numel
|
427 |
-
total_params += 1
|
428 |
-
|
429 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
-
|
431 |
-
if debug:
|
432 |
-
print(
|
433 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
-
)
|
435 |
-
|
436 |
-
# XXX: memory usage doubles here
|
437 |
-
state_dict[name] = torch.cat(
|
438 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
-
offset += partitioned_numel
|
441 |
-
|
442 |
-
offset *= world_size
|
443 |
-
|
444 |
-
# Sanity check
|
445 |
-
if offset != avail_numel:
|
446 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
-
|
448 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
-
|
450 |
-
|
451 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
-
exclude_frozen_parameters):
|
453 |
-
state_dict = OrderedDict()
|
454 |
-
|
455 |
-
# buffers
|
456 |
-
buffers = zero_model_states[0].buffers
|
457 |
-
state_dict.update(buffers)
|
458 |
-
if debug:
|
459 |
-
print(f"added {len(buffers)} buffers")
|
460 |
-
|
461 |
-
if not exclude_frozen_parameters:
|
462 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
-
|
464 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
-
|
466 |
-
# recover shared parameters
|
467 |
-
for pair in zero_model_states[0].shared_params:
|
468 |
-
if pair[1] in state_dict:
|
469 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
-
|
471 |
-
return state_dict
|
472 |
-
|
473 |
-
|
474 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
-
"""
|
476 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
-
via a model hub.
|
479 |
-
|
480 |
-
Args:
|
481 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
-
|
485 |
-
Returns:
|
486 |
-
- pytorch ``state_dict``
|
487 |
-
|
488 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
-
the checkpoint.
|
491 |
-
|
492 |
-
A typical usage might be ::
|
493 |
-
|
494 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
-
# do the training and checkpoint saving
|
496 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
-
model = model.cpu() # move to cpu
|
498 |
-
model.load_state_dict(state_dict)
|
499 |
-
# submit to model hub or save the model to share with others
|
500 |
-
|
501 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
-
|
505 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
-
|
507 |
-
"""
|
508 |
-
if tag is None:
|
509 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
-
if os.path.isfile(latest_path):
|
511 |
-
with open(latest_path, 'r') as fd:
|
512 |
-
tag = fd.read().strip()
|
513 |
-
else:
|
514 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
-
|
516 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
-
|
518 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
-
|
521 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
-
|
523 |
-
|
524 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
-
"""
|
526 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
-
|
529 |
-
Args:
|
530 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
-
"""
|
535 |
-
|
536 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
-
print(f"Saving fp32 state dict to {output_file}")
|
538 |
-
torch.save(state_dict, output_file)
|
539 |
-
|
540 |
-
|
541 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
-
"""
|
543 |
-
1. Put the provided model to cpu
|
544 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
-
3. Load it into the provided model
|
546 |
-
|
547 |
-
Args:
|
548 |
-
- ``model``: the model object to update
|
549 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
-
|
552 |
-
Returns:
|
553 |
-
- ``model`: modified model
|
554 |
-
|
555 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
-
conveniently placed for you in the checkpoint folder.
|
558 |
-
|
559 |
-
A typical usage might be ::
|
560 |
-
|
561 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
-
# submit to model hub or save the model to share with others
|
564 |
-
|
565 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
-
|
569 |
-
"""
|
570 |
-
logger.info(f"Extracting fp32 weights")
|
571 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
-
|
573 |
-
logger.info(f"Overwriting model with fp32 weights")
|
574 |
-
model = model.cpu()
|
575 |
-
model.load_state_dict(state_dict, strict=False)
|
576 |
-
|
577 |
-
return model
|
578 |
-
|
579 |
-
|
580 |
-
if __name__ == "__main__":
|
581 |
-
|
582 |
-
parser = argparse.ArgumentParser()
|
583 |
-
parser.add_argument("checkpoint_dir",
|
584 |
-
type=str,
|
585 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
-
parser.add_argument(
|
587 |
-
"output_file",
|
588 |
-
type=str,
|
589 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
-
parser.add_argument("-t",
|
591 |
-
"--tag",
|
592 |
-
type=str,
|
593 |
-
default=None,
|
594 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
-
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
-
args = parser.parse_args()
|
598 |
-
|
599 |
-
debug = args.debug
|
600 |
-
|
601 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
-
args.output_file,
|
603 |
-
tag=args.tag,
|
604 |
-
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|