evangelineteres commited on
Commit
f9e1f1b
·
verified ·
1 Parent(s): c86102b

End of training

Browse files
Files changed (2) hide show
  1. README.md +84 -0
  2. pytorch_lora_weights.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: diffusers
4
+ tags:
5
+ - text-to-image
6
+ - diffusers-training
7
+ - diffusers
8
+ - lora
9
+ - replicate
10
+ - template:sd-lora
11
+ - sd3.5-large
12
+ - sd3.5
13
+ - sd3.5-diffusers
14
+ base_model: stabilityai/stable-diffusion-3.5-large
15
+ instance_prompt: evangeline2
16
+ widget: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+
23
+ # SD3.5-Large DreamBooth LoRA - evangelineteres/evangeline2-lora
24
+
25
+ <Gallery />
26
+
27
+ ## Model description
28
+
29
+ These are evangelineteres/evangeline2-lora DreamBooth LoRA weights for stable-diffusion-3.5-large.
30
+
31
+ The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [SD3 diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_sd3.md).
32
+
33
+ Was LoRA for the text encoder enabled? False.
34
+
35
+ ## Trigger words
36
+
37
+ You should use `evangeline2` to trigger the image generation.
38
+
39
+ ## Download model
40
+
41
+ [Download the *.safetensors LoRA](evangelineteres/evangeline2-lora/tree/main) in the Files & versions tab.
42
+
43
+ ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
44
+
45
+ ```py
46
+ from diffusers import AutoPipelineForText2Image
47
+ import torch
48
+ pipeline = AutoPipelineForText2Image.from_pretrained(stable-diffusion-3.5-large, torch_dtype=torch.float16).to('cuda')
49
+ pipeline.load_lora_weights('evangelineteres/evangeline2-lora', weight_name='pytorch_lora_weights.safetensors')
50
+ image = pipeline('evangeline2').images[0]
51
+ ```
52
+
53
+ ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
54
+
55
+ - **LoRA**: download **[`diffusers_lora_weights.safetensors` here 💾](/evangelineteres/evangeline2-lora/blob/main/diffusers_lora_weights.safetensors)**.
56
+ - Rename it and place it on your `models/Lora` folder.
57
+ - On AUTOMATIC1111, load the LoRA by adding `<lora:your_new_name:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
58
+
59
+ For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
60
+
61
+ ## License
62
+
63
+ Please adhere to the licensing terms as described [here](https://huggingface.co/stabilityai/stable-diffusion-3.5-large/blob/main/LICENSE.md).
64
+
65
+ ## Training details
66
+
67
+ Trained on Replicate using: [lucataco/stable-diffusion-3.5-large-lora-trainer](https://replicate.com/lucataco/stable-diffusion-3.5-large-lora-trainer)
68
+
69
+
70
+ ## Intended uses & limitations
71
+
72
+ #### How to use
73
+
74
+ ```python
75
+ # TODO: add an example code snippet for running this diffusion pipeline
76
+ ```
77
+
78
+ #### Limitations and bias
79
+
80
+ [TODO: provide examples of latent issues and potential remediations]
81
+
82
+ ## Training details
83
+
84
+ [TODO: describe the data used to train the model]
pytorch_lora_weights.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baece798dbe2ef30fca10c38a143219177fc02ffec6965a4f4ec9a7d9620de88
3
+ size 23697992