Adriane Boyd
Add nb_udv25_norwegiannynorsk_trf-0.0.1
2f4280f
raw
history blame
5.91 kB
[paths]
train = "corpus/UD_Norwegian-Nynorsk/train.spacy"
dev = "corpus/UD_Norwegian-Nynorsk/dev.spacy"
vectors = null
init_tok2vec = null
tokenizer_source = "training/UD_Norwegian-Nynorsk/tokenizer/model-best"
transformer_source = "training/UD_Norwegian-Nynorsk/transformer/model-best"
[system]
gpu_allocator = "pytorch"
seed = 0
[nlp]
lang = "nb"
pipeline = ["experimental_char_ner_tokenizer","transformer","senter","tagger","morphologizer","parser","experimental_edit_tree_lemmatizer"]
batch_size = 64
disabled = ["senter"]
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy-experimental.char_pretokenizer.v1"}
[components]
[components.experimental_char_ner_tokenizer]
factory = "experimental_char_ner_tokenizer"
scorer = {"@scorers":"spacy-experimental.tokenizer_scorer.v1"}
[components.experimental_char_ner_tokenizer.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null
[components.experimental_char_ner_tokenizer.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[components.experimental_char_ner_tokenizer.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 128
attrs = ["ORTH","LOWER","IS_DIGIT","IS_ALPHA","IS_SPACE","IS_PUNCT"]
rows = [1000,500,50,50,50,50]
include_static_vectors = false
[components.experimental_char_ner_tokenizer.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 128
depth = 4
window_size = 4
maxout_pieces = 2
[components.experimental_edit_tree_lemmatizer]
factory = "experimental_edit_tree_lemmatizer"
backoff = "orth"
min_tree_freq = 1
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 1
[components.experimental_edit_tree_lemmatizer.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.experimental_edit_tree_lemmatizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.morphologizer]
factory = "morphologizer"
extend = false
overwrite = false
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"}
[components.morphologizer.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.morphologizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 5
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 3
use_upper = false
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.senter]
factory = "senter"
overwrite = false
scorer = {"@scorers":"spacy.senter_scorer.v1"}
[components.senter.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.senter.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.tagger]
factory = "tagger"
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}
[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v3"
name = "xlm-roberta-base"
mixed_precision = true
[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96
[components.transformer.model.grad_scaler_config]
[components.transformer.model.tokenizer_config]
use_fast = true
[components.transformer.model.transformer_config]
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[training]
train_corpus = "corpora.train"
dev_corpus = "corpora.dev"
seed = ${system:seed}
gpu_allocator = ${system:gpu_allocator}
dropout = 0.1
accumulate_gradient = 3
patience = 5000
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
before_to_disk = null
annotating_components = []
[training.batcher]
@batchers = "spacy.batch_by_padded.v1"
discard_oversize = true
get_length = null
size = 2000
buffer = 256
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 0.00000001
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005
[training.score_weights]
token_f = 0.0
token_p = null
token_r = null
token_acc = null
sents_f = 0.05
sents_p = 0.0
sents_r = 0.0
tag_acc = 0.11
pos_acc = 0.05
morph_acc = 0.05
morph_per_feat = null
dep_uas = 0.11
dep_las = 0.11
dep_las_per_type = null
lemma_acc = 0.52
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.tokenizer]