Update README.md
Browse files
README.md
CHANGED
@@ -6,11 +6,16 @@ pipeline_tag: feature-extraction
|
|
6 |
DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
|
7 |
Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
## Usage (HuggingFace Transformers)
|
16 |
Using the model directly available in HuggingFace transformers .
|
|
|
6 |
DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
|
7 |
Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).
|
8 |
|
9 |
+
<p align="center">
|
10 |
+
<img src="https://raw.githubusercontent.com/facebookresearch/dpr-scale/main/dragon/images/teaser.png" width="600">
|
11 |
+
</p>
|
12 |
|
13 |
+
The associated GitHub repository is available here https://github.com/facebookresearch/dpr-scale/tree/main/dragon. We use asymmetric dual encoder, with two distinctly parameterized encoders. The following models are also available:
|
14 |
+
|
15 |
+
Model | Initialization | MARCO Dev | BEIR | Query Encoder Path | Context Encoder Path
|
16 |
+
|---|---|---|---|---|---
|
17 |
+
DRAGON+ | Shitao/RetroMAE| 39.0 | 47.4 | [facebook/dragon-plus-query-encoder](https://huggingface.co/facebook/dragon-plus-query-encoder) | [facebook/dragon-plus-context-encoder](https://huggingface.co/facebook/dragon-plus-context-encoder)
|
18 |
+
DRAGON-RoBERTa | RoBERTa-base | 39.4 | 47.2 | [facebook/dragon-roberta-query-encoder](https://huggingface.co/facebook/dragon-roberta-query-encoder) | [facebook/dragon-roberta-context-encoder](https://huggingface.co/facebook/dragon-roberta-context-encoder)
|
19 |
|
20 |
## Usage (HuggingFace Transformers)
|
21 |
Using the model directly available in HuggingFace transformers .
|