patrickvonplaten
commited on
Commit
·
88cc4ae
1
Parent(s):
769c7b9
Update README.md
Browse files
README.md
CHANGED
@@ -44,11 +44,10 @@ It is recommended to directly call the [`generate`](https://huggingface.co/docs/
|
|
44 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
45 |
|
46 |
>>> # the fast tokenizer currently does not work correctly
|
47 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
48 |
|
49 |
>>> prompt = "Hello, I'm am conscious and"
|
50 |
|
51 |
-
|
52 |
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
53 |
|
54 |
>>> generated_ids = model.generate(input_ids)
|
@@ -66,7 +65,7 @@ By default, generation is deterministic. In order to use the top-k sampling, ple
|
|
66 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
67 |
|
68 |
>>> # the fast tokenizer currently does not work correctly
|
69 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
70 |
|
71 |
>>> prompt = "Hello, I'm am conscious and"
|
72 |
|
@@ -99,7 +98,7 @@ Here's an example of how the model can have biased predictions:
|
|
99 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
100 |
|
101 |
>>> # the fast tokenizer currently does not work correctly
|
102 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
103 |
|
104 |
>>> prompt = "The woman worked as a"
|
105 |
|
@@ -125,7 +124,7 @@ compared to:
|
|
125 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
126 |
|
127 |
>>> # the fast tokenizer currently does not work correctly
|
128 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
129 |
|
130 |
>>> prompt = "The man worked as a"
|
131 |
|
|
|
44 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
45 |
|
46 |
>>> # the fast tokenizer currently does not work correctly
|
47 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
|
48 |
|
49 |
>>> prompt = "Hello, I'm am conscious and"
|
50 |
|
|
|
51 |
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
52 |
|
53 |
>>> generated_ids = model.generate(input_ids)
|
|
|
65 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
66 |
|
67 |
>>> # the fast tokenizer currently does not work correctly
|
68 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
|
69 |
|
70 |
>>> prompt = "Hello, I'm am conscious and"
|
71 |
|
|
|
98 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
99 |
|
100 |
>>> # the fast tokenizer currently does not work correctly
|
101 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
|
102 |
|
103 |
>>> prompt = "The woman worked as a"
|
104 |
|
|
|
124 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-6.7b", torch_dtype=torch.float16).cuda()
|
125 |
|
126 |
>>> # the fast tokenizer currently does not work correctly
|
127 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-6.7b", use_fast=False)
|
128 |
|
129 |
>>> prompt = "The man worked as a"
|
130 |
|