Text Generation
Transformers
PyTorch
xglm
File size: 1,078 Bytes
6cf481e
 
 
 
 
 
243d3e1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
---
license: mit
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
inference: false
---

# XGLM-2.9B

XGLM-2.9B is a multilingual autoregressive language model (with 2.9 billion parameters) trained on a balanced corpus of a diverse set of languages totaling 500 billion sub-tokens. It was introduced in the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin\*, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li\* (\*Equal Contribution). The original implementation was released in [this repository](https://github.com/pytorch/fairseq/tree/main/examples/xglm).

## Model card

For intended usage of the model, please refer to the [model card](https://github.com/pytorch/fairseq/blob/main/examples/xglm/model_card.md) released by the team releasing XGLM-2.9B.