File size: 2,143 Bytes
7fc6328 98ac85a af170b0 7fc6328 af170b0 a295e71 0ca07bd 7fc6328 af170b0 7fc6328 d97412f af170b0 d97412f 7fc6328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
base_model: fahadqazi/testts1234
tags:
- generated_from_trainer
model-index:
- name: testts1234
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# testts1234
This model is a fine-tuned version of [fahadqazi/testts1234](https://huggingface.co/fahadqazi/testts1234) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3092
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 1500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.3565 | 0.6803 | 100 | 0.3094 |
| 0.3532 | 1.3605 | 200 | 0.3091 |
| 0.3528 | 2.0408 | 300 | 0.3084 |
| 0.3619 | 2.7211 | 400 | 0.3092 |
| 0.3574 | 3.4014 | 500 | 0.3088 |
| 0.3584 | 4.0816 | 600 | 0.3090 |
| 0.3526 | 4.7619 | 700 | 0.3090 |
| 0.356 | 5.4422 | 800 | 0.3087 |
| 0.3528 | 6.1224 | 900 | 0.3085 |
| 0.353 | 6.8027 | 1000 | 0.3091 |
| 0.3606 | 7.4830 | 1100 | 0.3087 |
| 0.3531 | 8.1633 | 1200 | 0.3088 |
| 0.3581 | 8.8435 | 1300 | 0.3088 |
| 0.3503 | 9.5238 | 1400 | 0.3086 |
| 0.3458 | 10.2041 | 1500 | 0.3092 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|