fahrendrakhoirul
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -35,7 +35,7 @@ Optionally, provide brief examples of reviews that would fall into each category
|
|
35 |
```python
|
36 |
import torch.nn as nn
|
37 |
from huggingface_hub import PyTorchModelHubMixin
|
38 |
-
from transformers import
|
39 |
|
40 |
class IndoBertEcommerceReview(nn.Module, PyTorchModelHubMixin):
|
41 |
def __init__(self, bert):
|
@@ -49,9 +49,7 @@ class IndoBertEcommerceReview(nn.Module, PyTorchModelHubMixin):
|
|
49 |
probabilities = self.sigmoid(logits)
|
50 |
return probabilities
|
51 |
|
52 |
-
bert =
|
53 |
-
num_labels=3,
|
54 |
-
problem_type="multi_label_classification")
|
55 |
tokenizer = AutoTokenizer.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews")
|
56 |
model = IndoBertEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews", bert=bert)
|
57 |
```
|
|
|
35 |
```python
|
36 |
import torch.nn as nn
|
37 |
from huggingface_hub import PyTorchModelHubMixin
|
38 |
+
from transformers import BertModel, AutoTokenizer
|
39 |
|
40 |
class IndoBertEcommerceReview(nn.Module, PyTorchModelHubMixin):
|
41 |
def __init__(self, bert):
|
|
|
49 |
probabilities = self.sigmoid(logits)
|
50 |
return probabilities
|
51 |
|
52 |
+
bert = BertModel.from_pretrained("indobenchmark/indobert-base-p1")
|
|
|
|
|
53 |
tokenizer = AutoTokenizer.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews")
|
54 |
model = IndoBertEcommerceReview.from_pretrained("fahrendrakhoirul/indobert-finetuned-ecommerce-reviews", bert=bert)
|
55 |
```
|