fats-fme commited on
Commit
29af232
·
verified ·
1 Parent(s): 56f7a7a

Training in progress, step 274, checkpoint

Browse files
last-checkpoint/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:669a3e72f719737b15fab04bb2c0bb92048dfd22e9ef658a342e99d35c08129b
3
  size 335922386
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9f07b559833c664b940028fadff307d4f9c6c31b9d2495ca5517b3232ce314d
3
  size 335922386
last-checkpoint/rng_state_0.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b50dc51f8e724b3669be809cbc82ebe11f85d559dcac23ed00b062397afcd9e
3
  size 14512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b68477d58ee6163f80b6d10adb704491497cf5b858320688a4d6b9385c805dc9
3
  size 14512
last-checkpoint/rng_state_1.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5ddb4f7d90f5558927f96b9e1767bd45cee0b3d26de04640235b5ab19fc8793
3
  size 14512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1ee28f2ad50f7d4d6db4a357fec6412e0c356277766a763cf3e27ea0e7ff718
3
  size 14512
last-checkpoint/scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:89e4cd8ea348bd2f82958df5383cd58880eb3efd1ec75ed70ce4064026b49560
3
  size 1064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dc0fb8aa9466d382847ad5edc9f818f11724a349a169d2f60663f8307006330
3
  size 1064
last-checkpoint/trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 0.7537551206190259,
5
  "eval_steps": 69,
6
- "global_step": 207,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -1488,6 +1488,475 @@
1488
  "eval_samples_per_second": 8.37,
1489
  "eval_steps_per_second": 2.097,
1490
  "step": 207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491
  }
1492
  ],
1493
  "logging_steps": 1,
@@ -1502,12 +1971,12 @@
1502
  "should_evaluate": false,
1503
  "should_log": false,
1504
  "should_save": true,
1505
- "should_training_stop": false
1506
  },
1507
  "attributes": {}
1508
  }
1509
  },
1510
- "total_flos": 5.821918917018255e+17,
1511
  "train_batch_size": 2,
1512
  "trial_name": null,
1513
  "trial_params": null
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 0.9977241693218024,
5
  "eval_steps": 69,
6
+ "global_step": 274,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
1488
  "eval_samples_per_second": 8.37,
1489
  "eval_steps_per_second": 2.097,
1490
  "step": 207
1491
+ },
1492
+ {
1493
+ "epoch": 0.757396449704142,
1494
+ "grad_norm": NaN,
1495
+ "learning_rate": 3.9868290870159405e-05,
1496
+ "loss": 0.0,
1497
+ "step": 208
1498
+ },
1499
+ {
1500
+ "epoch": 0.761037778789258,
1501
+ "grad_norm": NaN,
1502
+ "learning_rate": 3.875363186960499e-05,
1503
+ "loss": 0.0,
1504
+ "step": 209
1505
+ },
1506
+ {
1507
+ "epoch": 0.7646791078743741,
1508
+ "grad_norm": NaN,
1509
+ "learning_rate": 3.7651019814126654e-05,
1510
+ "loss": 0.0,
1511
+ "step": 210
1512
+ },
1513
+ {
1514
+ "epoch": 0.7683204369594903,
1515
+ "grad_norm": NaN,
1516
+ "learning_rate": 3.6560671583635467e-05,
1517
+ "loss": 0.0,
1518
+ "step": 211
1519
+ },
1520
+ {
1521
+ "epoch": 0.7719617660446063,
1522
+ "grad_norm": NaN,
1523
+ "learning_rate": 3.548280164579126e-05,
1524
+ "loss": 0.0,
1525
+ "step": 212
1526
+ },
1527
+ {
1528
+ "epoch": 0.7756030951297224,
1529
+ "grad_norm": NaN,
1530
+ "learning_rate": 3.4417622013817595e-05,
1531
+ "loss": 0.0,
1532
+ "step": 213
1533
+ },
1534
+ {
1535
+ "epoch": 0.7792444242148384,
1536
+ "grad_norm": NaN,
1537
+ "learning_rate": 3.336534220479961e-05,
1538
+ "loss": 0.0,
1539
+ "step": 214
1540
+ },
1541
+ {
1542
+ "epoch": 0.7828857532999545,
1543
+ "grad_norm": NaN,
1544
+ "learning_rate": 3.2326169198472556e-05,
1545
+ "loss": 0.0,
1546
+ "step": 215
1547
+ },
1548
+ {
1549
+ "epoch": 0.7865270823850705,
1550
+ "grad_norm": NaN,
1551
+ "learning_rate": 3.130030739650983e-05,
1552
+ "loss": 0.0,
1553
+ "step": 216
1554
+ },
1555
+ {
1556
+ "epoch": 0.7901684114701866,
1557
+ "grad_norm": NaN,
1558
+ "learning_rate": 3.0287958582317676e-05,
1559
+ "loss": 0.0,
1560
+ "step": 217
1561
+ },
1562
+ {
1563
+ "epoch": 0.7938097405553027,
1564
+ "grad_norm": NaN,
1565
+ "learning_rate": 2.9289321881345254e-05,
1566
+ "loss": 0.0,
1567
+ "step": 218
1568
+ },
1569
+ {
1570
+ "epoch": 0.7974510696404188,
1571
+ "grad_norm": NaN,
1572
+ "learning_rate": 2.8304593721917285e-05,
1573
+ "loss": 0.0,
1574
+ "step": 219
1575
+ },
1576
+ {
1577
+ "epoch": 0.8010923987255348,
1578
+ "grad_norm": NaN,
1579
+ "learning_rate": 2.7333967796597315e-05,
1580
+ "loss": 0.0,
1581
+ "step": 220
1582
+ },
1583
+ {
1584
+ "epoch": 0.8047337278106509,
1585
+ "grad_norm": NaN,
1586
+ "learning_rate": 2.6377635024089087e-05,
1587
+ "loss": 0.0,
1588
+ "step": 221
1589
+ },
1590
+ {
1591
+ "epoch": 0.8083750568957669,
1592
+ "grad_norm": NaN,
1593
+ "learning_rate": 2.5435783511683443e-05,
1594
+ "loss": 0.0,
1595
+ "step": 222
1596
+ },
1597
+ {
1598
+ "epoch": 0.812016385980883,
1599
+ "grad_norm": NaN,
1600
+ "learning_rate": 2.450859851825842e-05,
1601
+ "loss": 0.0,
1602
+ "step": 223
1603
+ },
1604
+ {
1605
+ "epoch": 0.815657715065999,
1606
+ "grad_norm": NaN,
1607
+ "learning_rate": 2.3596262417839255e-05,
1608
+ "loss": 0.0,
1609
+ "step": 224
1610
+ },
1611
+ {
1612
+ "epoch": 0.8192990441511152,
1613
+ "grad_norm": NaN,
1614
+ "learning_rate": 2.26989546637263e-05,
1615
+ "loss": 0.0,
1616
+ "step": 225
1617
+ },
1618
+ {
1619
+ "epoch": 0.8229403732362313,
1620
+ "grad_norm": NaN,
1621
+ "learning_rate": 2.181685175319702e-05,
1622
+ "loss": 0.0,
1623
+ "step": 226
1624
+ },
1625
+ {
1626
+ "epoch": 0.8265817023213473,
1627
+ "grad_norm": NaN,
1628
+ "learning_rate": 2.095012719278966e-05,
1629
+ "loss": 0.0,
1630
+ "step": 227
1631
+ },
1632
+ {
1633
+ "epoch": 0.8302230314064634,
1634
+ "grad_norm": NaN,
1635
+ "learning_rate": 2.009895146417512e-05,
1636
+ "loss": 0.0,
1637
+ "step": 228
1638
+ },
1639
+ {
1640
+ "epoch": 0.8338643604915794,
1641
+ "grad_norm": NaN,
1642
+ "learning_rate": 1.926349199062376e-05,
1643
+ "loss": 0.0,
1644
+ "step": 229
1645
+ },
1646
+ {
1647
+ "epoch": 0.8375056895766955,
1648
+ "grad_norm": NaN,
1649
+ "learning_rate": 1.8443913104073983e-05,
1650
+ "loss": 0.0,
1651
+ "step": 230
1652
+ },
1653
+ {
1654
+ "epoch": 0.8411470186618115,
1655
+ "grad_norm": NaN,
1656
+ "learning_rate": 1.7640376012808536e-05,
1657
+ "loss": 0.0,
1658
+ "step": 231
1659
+ },
1660
+ {
1661
+ "epoch": 0.8447883477469277,
1662
+ "grad_norm": NaN,
1663
+ "learning_rate": 1.6853038769745467e-05,
1664
+ "loss": 0.0,
1665
+ "step": 232
1666
+ },
1667
+ {
1668
+ "epoch": 0.8484296768320437,
1669
+ "grad_norm": NaN,
1670
+ "learning_rate": 1.6082056241349786e-05,
1671
+ "loss": 0.0,
1672
+ "step": 233
1673
+ },
1674
+ {
1675
+ "epoch": 0.8520710059171598,
1676
+ "grad_norm": NaN,
1677
+ "learning_rate": 1.5327580077171587e-05,
1678
+ "loss": 0.0,
1679
+ "step": 234
1680
+ },
1681
+ {
1682
+ "epoch": 0.8557123350022758,
1683
+ "grad_norm": NaN,
1684
+ "learning_rate": 1.4589758680017263e-05,
1685
+ "loss": 0.0,
1686
+ "step": 235
1687
+ },
1688
+ {
1689
+ "epoch": 0.8593536640873919,
1690
+ "grad_norm": NaN,
1691
+ "learning_rate": 1.3868737176759106e-05,
1692
+ "loss": 0.0,
1693
+ "step": 236
1694
+ },
1695
+ {
1696
+ "epoch": 0.8629949931725079,
1697
+ "grad_norm": NaN,
1698
+ "learning_rate": 1.3164657389789458e-05,
1699
+ "loss": 0.0,
1700
+ "step": 237
1701
+ },
1702
+ {
1703
+ "epoch": 0.866636322257624,
1704
+ "grad_norm": NaN,
1705
+ "learning_rate": 1.2477657809124631e-05,
1706
+ "loss": 0.0,
1707
+ "step": 238
1708
+ },
1709
+ {
1710
+ "epoch": 0.8702776513427402,
1711
+ "grad_norm": NaN,
1712
+ "learning_rate": 1.1807873565164506e-05,
1713
+ "loss": 0.0,
1714
+ "step": 239
1715
+ },
1716
+ {
1717
+ "epoch": 0.8739189804278562,
1718
+ "grad_norm": NaN,
1719
+ "learning_rate": 1.1155436402112785e-05,
1720
+ "loss": 0.0,
1721
+ "step": 240
1722
+ },
1723
+ {
1724
+ "epoch": 0.8775603095129723,
1725
+ "grad_norm": NaN,
1726
+ "learning_rate": 1.0520474652063394e-05,
1727
+ "loss": 0.0,
1728
+ "step": 241
1729
+ },
1730
+ {
1731
+ "epoch": 0.8812016385980883,
1732
+ "grad_norm": NaN,
1733
+ "learning_rate": 9.903113209758096e-06,
1734
+ "loss": 0.0,
1735
+ "step": 242
1736
+ },
1737
+ {
1738
+ "epoch": 0.8848429676832044,
1739
+ "grad_norm": NaN,
1740
+ "learning_rate": 9.303473508019944e-06,
1741
+ "loss": 0.0,
1742
+ "step": 243
1743
+ },
1744
+ {
1745
+ "epoch": 0.8884842967683204,
1746
+ "grad_norm": NaN,
1747
+ "learning_rate": 8.72167349386811e-06,
1748
+ "loss": 0.0,
1749
+ "step": 244
1750
+ },
1751
+ {
1752
+ "epoch": 0.8921256258534365,
1753
+ "grad_norm": NaN,
1754
+ "learning_rate": 8.157827605317892e-06,
1755
+ "loss": 0.0,
1756
+ "step": 245
1757
+ },
1758
+ {
1759
+ "epoch": 0.8957669549385525,
1760
+ "grad_norm": NaN,
1761
+ "learning_rate": 7.612046748871327e-06,
1762
+ "loss": 0.0,
1763
+ "step": 246
1764
+ },
1765
+ {
1766
+ "epoch": 0.8994082840236687,
1767
+ "grad_norm": NaN,
1768
+ "learning_rate": 7.084438277702188e-06,
1769
+ "loss": 0.0,
1770
+ "step": 247
1771
+ },
1772
+ {
1773
+ "epoch": 0.9030496131087847,
1774
+ "grad_norm": NaN,
1775
+ "learning_rate": 6.5751059705400295e-06,
1776
+ "loss": 0.0,
1777
+ "step": 248
1778
+ },
1779
+ {
1780
+ "epoch": 0.9066909421939008,
1781
+ "grad_norm": NaN,
1782
+ "learning_rate": 6.084150011257239e-06,
1783
+ "loss": 0.0,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 0.9103322712790168,
1788
+ "grad_norm": NaN,
1789
+ "learning_rate": 5.611666969163243e-06,
1790
+ "loss": 0.0,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 0.9139736003641329,
1795
+ "grad_norm": NaN,
1796
+ "learning_rate": 5.157749780009735e-06,
1797
+ "loss": 0.0,
1798
+ "step": 251
1799
+ },
1800
+ {
1801
+ "epoch": 0.9176149294492489,
1802
+ "grad_norm": NaN,
1803
+ "learning_rate": 4.722487727710368e-06,
1804
+ "loss": 0.0,
1805
+ "step": 252
1806
+ },
1807
+ {
1808
+ "epoch": 0.921256258534365,
1809
+ "grad_norm": NaN,
1810
+ "learning_rate": 4.305966426779118e-06,
1811
+ "loss": 0.0,
1812
+ "step": 253
1813
+ },
1814
+ {
1815
+ "epoch": 0.9248975876194812,
1816
+ "grad_norm": NaN,
1817
+ "learning_rate": 3.908267805490051e-06,
1818
+ "loss": 0.0,
1819
+ "step": 254
1820
+ },
1821
+ {
1822
+ "epoch": 0.9285389167045972,
1823
+ "grad_norm": NaN,
1824
+ "learning_rate": 3.529470089762421e-06,
1825
+ "loss": 0.0,
1826
+ "step": 255
1827
+ },
1828
+ {
1829
+ "epoch": 0.9321802457897133,
1830
+ "grad_norm": NaN,
1831
+ "learning_rate": 3.169647787773866e-06,
1832
+ "loss": 0.0,
1833
+ "step": 256
1834
+ },
1835
+ {
1836
+ "epoch": 0.9358215748748293,
1837
+ "grad_norm": NaN,
1838
+ "learning_rate": 2.8288716753049005e-06,
1839
+ "loss": 0.0,
1840
+ "step": 257
1841
+ },
1842
+ {
1843
+ "epoch": 0.9394629039599454,
1844
+ "grad_norm": NaN,
1845
+ "learning_rate": 2.5072087818176382e-06,
1846
+ "loss": 0.0,
1847
+ "step": 258
1848
+ },
1849
+ {
1850
+ "epoch": 0.9431042330450614,
1851
+ "grad_norm": NaN,
1852
+ "learning_rate": 2.20472237727124e-06,
1853
+ "loss": 0.0,
1854
+ "step": 259
1855
+ },
1856
+ {
1857
+ "epoch": 0.9467455621301775,
1858
+ "grad_norm": NaN,
1859
+ "learning_rate": 1.921471959676957e-06,
1860
+ "loss": 0.0,
1861
+ "step": 260
1862
+ },
1863
+ {
1864
+ "epoch": 0.9503868912152936,
1865
+ "grad_norm": NaN,
1866
+ "learning_rate": 1.657513243395159e-06,
1867
+ "loss": 0.0,
1868
+ "step": 261
1869
+ },
1870
+ {
1871
+ "epoch": 0.9540282203004097,
1872
+ "grad_norm": NaN,
1873
+ "learning_rate": 1.4128981481764115e-06,
1874
+ "loss": 0.0,
1875
+ "step": 262
1876
+ },
1877
+ {
1878
+ "epoch": 0.9576695493855257,
1879
+ "grad_norm": NaN,
1880
+ "learning_rate": 1.1876747889491223e-06,
1881
+ "loss": 0.0,
1882
+ "step": 263
1883
+ },
1884
+ {
1885
+ "epoch": 0.9613108784706418,
1886
+ "grad_norm": NaN,
1887
+ "learning_rate": 9.818874663554357e-07,
1888
+ "loss": 0.0,
1889
+ "step": 264
1890
+ },
1891
+ {
1892
+ "epoch": 0.9649522075557578,
1893
+ "grad_norm": NaN,
1894
+ "learning_rate": 7.955766580375335e-07,
1895
+ "loss": 0.0,
1896
+ "step": 265
1897
+ },
1898
+ {
1899
+ "epoch": 0.9685935366408739,
1900
+ "grad_norm": NaN,
1901
+ "learning_rate": 6.287790106757396e-07,
1902
+ "loss": 0.0,
1903
+ "step": 266
1904
+ },
1905
+ {
1906
+ "epoch": 0.9722348657259899,
1907
+ "grad_norm": NaN,
1908
+ "learning_rate": 4.815273327803182e-07,
1909
+ "loss": 0.0,
1910
+ "step": 267
1911
+ },
1912
+ {
1913
+ "epoch": 0.9758761948111061,
1914
+ "grad_norm": NaN,
1915
+ "learning_rate": 3.5385058823809156e-07,
1916
+ "loss": 0.0,
1917
+ "step": 268
1918
+ },
1919
+ {
1920
+ "epoch": 0.9795175238962222,
1921
+ "grad_norm": NaN,
1922
+ "learning_rate": 2.457738906153972e-07,
1923
+ "loss": 0.0,
1924
+ "step": 269
1925
+ },
1926
+ {
1927
+ "epoch": 0.9831588529813382,
1928
+ "grad_norm": NaN,
1929
+ "learning_rate": 1.5731849821833954e-07,
1930
+ "loss": 0.0,
1931
+ "step": 270
1932
+ },
1933
+ {
1934
+ "epoch": 0.9868001820664543,
1935
+ "grad_norm": NaN,
1936
+ "learning_rate": 8.850180991131219e-08,
1937
+ "loss": 0.0,
1938
+ "step": 271
1939
+ },
1940
+ {
1941
+ "epoch": 0.9904415111515703,
1942
+ "grad_norm": NaN,
1943
+ "learning_rate": 3.933736169471347e-08,
1944
+ "loss": 0.0,
1945
+ "step": 272
1946
+ },
1947
+ {
1948
+ "epoch": 0.9940828402366864,
1949
+ "grad_norm": NaN,
1950
+ "learning_rate": 9.834824042498358e-09,
1951
+ "loss": 0.0,
1952
+ "step": 273
1953
+ },
1954
+ {
1955
+ "epoch": 0.9977241693218024,
1956
+ "grad_norm": NaN,
1957
+ "learning_rate": 0.0,
1958
+ "loss": 0.0,
1959
+ "step": 274
1960
  }
1961
  ],
1962
  "logging_steps": 1,
 
1971
  "should_evaluate": false,
1972
  "should_log": false,
1973
  "should_save": true,
1974
+ "should_training_stop": true
1975
  },
1976
  "attributes": {}
1977
  }
1978
  },
1979
+ "total_flos": 7.706308131705324e+17,
1980
  "train_batch_size": 2,
1981
  "trial_name": null,
1982
  "trial_params": null