fbeghell commited on
Commit
b6bd787
·
1 Parent(s): 84ca44c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.50 +/- 0.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fead64fb52dbcb6119ae67cf9ba0f8f8dc7870126698893e1842a1c22b724424
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f15df5b7dc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f15df5bb090>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677260794222826452,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANLXMPgp0sDvsBg8/NLXMPgp0sDvsBg8/NLXMPgp0sDvsBg8/NLXMPgp0sDvsBg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXDzLv+xuJj/Fyac/Mqg+P+GVkb/fxF2/VdCYv1xN4b4nk54/s2KeP6sYrb5ILtg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9ro0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9ro0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9ro0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9rqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.39981997 0.00538493 0.55869937]\n [0.39981997 0.00538493 0.55869937]\n [0.39981997 0.00538493 0.55869937]\n [0.39981997 0.00538493 0.55869937]]",
60
+ "desired_goal": "[[-1.5877795 0.65013003 1.310845 ]\n [ 0.74475396 -1.1373864 -0.86628526]\n [-1.1938578 -0.44004333 1.2388657 ]\n [ 1.2373871 -0.33807883 1.6889124 ]]",
61
+ "observation": "[[ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]\n [ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]\n [ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]\n [ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAabqUvQJaCT2Yh548njTEPePCuD1kF1M+RzcLPl9pSrs1AzQ+0yn8PfE1xTzGVA8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.07262117 0.0335331 0.01935177]\n [ 0.09580348 0.09021547 0.20614392]\n [ 0.13595305 -0.00308856 0.17579348]\n [ 0.12312665 0.02407357 0.13997182]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+FROe0oOAcCUhpRSlIwBbJRLMowBdJRHQKSJ1TnaFmF1fZQoaAZoCWgPQwj+e/DapQ3ov5SGlFKUaBVLMmgWR0CkiZA/1QIldX2UKGgGaAloD0MI3dCUnX7Q8L+UhpRSlGgVSzJoFkdApIlLcbiqAHV9lChoBmgJaA9DCJfjFYieFPa/lIaUUpRoFUsyaBZHQKSJBU3n6mB1fZQoaAZoCWgPQwhbJy7HKxDzv5SGlFKUaBVLMmgWR0Ckivuy3Td+dX2UKGgGaAloD0MIJ2a9GMpJ9r+UhpRSlGgVSzJoFkdApIq2r0aqCHV9lChoBmgJaA9DCOP+I9OhE/S/lIaUUpRoFUsyaBZHQKSKcZP2wmp1fZQoaAZoCWgPQwiBzw8jhEfxv5SGlFKUaBVLMmgWR0CkiitgSeyzdX2UKGgGaAloD0MIg2kYPiKm8r+UhpRSlGgVSzJoFkdApIwnVI7NjnV9lChoBmgJaA9DCLpOIy2VN/e/lIaUUpRoFUsyaBZHQKSL4lImPYF1fZQoaAZoCWgPQwgUdlH0wIf7v5SGlFKUaBVLMmgWR0Cki504zabndX2UKGgGaAloD0MICYz1DUyu9L+UhpRSlGgVSzJoFkdApItXFDOTq3V9lChoBmgJaA9DCG9GzVfJR/C/lIaUUpRoFUsyaBZHQKSNUPqcEvF1fZQoaAZoCWgPQwhHV+nuOtv0v5SGlFKUaBVLMmgWR0CkjQv0AcT8dX2UKGgGaAloD0MIN+Fembdq8b+UhpRSlGgVSzJoFkdApIzG2y9mH3V9lChoBmgJaA9DCMDQI0bPLea/lIaUUpRoFUsyaBZHQKSMgKm8/Ux1fZQoaAZoCWgPQwipFDsahzr3v5SGlFKUaBVLMmgWR0CkjnhUaQ3hdX2UKGgGaAloD0MI3ze+9swS8L+UhpRSlGgVSzJoFkdApI4zSiM5wXV9lChoBmgJaA9DCCOgwhGk0vO/lIaUUpRoFUsyaBZHQKSN7jJ+2E11fZQoaAZoCWgPQwiE1O3sK4/vv5SGlFKUaBVLMmgWR0Ckjaf/WDpUdX2UKGgGaAloD0MIPSgoRSt38r+UhpRSlGgVSzJoFkdApI+ooRZlnXV9lChoBmgJaA9DCHwnZr0YSuO/lIaUUpRoFUsyaBZHQKSPY5AhStN1fZQoaAZoCWgPQwhnRGlv8IUAwJSGlFKUaBVLMmgWR0Ckjx5/kNnXdX2UKGgGaAloD0MICaUvhJz347+UhpRSlGgVSzJoFkdApI7YUpNKy3V9lChoBmgJaA9DCFERp5Nsdde/lIaUUpRoFUsyaBZHQKSQ17iQ1aZ1fZQoaAZoCWgPQwiLM4Y5QRv1v5SGlFKUaBVLMmgWR0CkkJK6WgOCdX2UKGgGaAloD0MImkS94NOc5b+UhpRSlGgVSzJoFkdApJBNmlImPnV9lChoBmgJaA9DCFBUNqyprPm/lIaUUpRoFUsyaBZHQKSQB2/SH/N1fZQoaAZoCWgPQwjwTdNnB9z4v5SGlFKUaBVLMmgWR0CkkgE43m3fdX2UKGgGaAloD0MIKSSZ1Ttc+r+UhpRSlGgVSzJoFkdApJG8KkVN6HV9lChoBmgJaA9DCKLrwg/Op+q/lIaUUpRoFUsyaBZHQKSRdxDst051fZQoaAZoCWgPQwiM1lHVBNHlv5SGlFKUaBVLMmgWR0CkkTDRMN+cdX2UKGgGaAloD0MIPtAKDFnd5r+UhpRSlGgVSzJoFkdApJMsNYr8SHV9lChoBmgJaA9DCEFkkSbewfG/lIaUUpRoFUsyaBZHQKSS5x4IKMN1fZQoaAZoCWgPQwj6J7hYUYP2v5SGlFKUaBVLMmgWR0CkkqHyVfNSdX2UKGgGaAloD0MIlSpR9pYy/b+UhpRSlGgVSzJoFkdApJJbupjtonV9lChoBmgJaA9DCJHz/j9OGO+/lIaUUpRoFUsyaBZHQKSUWSRKYiR1fZQoaAZoCWgPQwjZQ/tYwS/5v5SGlFKUaBVLMmgWR0CklBPuG9HudX2UKGgGaAloD0MIF9hjIqVZ9L+UhpRSlGgVSzJoFkdApJPOw3YL9nV9lChoBmgJaA9DCGpQNA9gEeq/lIaUUpRoFUsyaBZHQKSTiJUo8ZF1fZQoaAZoCWgPQwh0X85sV2jvv5SGlFKUaBVLMmgWR0CklYwo9cKPdX2UKGgGaAloD0MIExCTcCFvAMCUhpRSlGgVSzJoFkdApJVHRqoIfXV9lChoBmgJaA9DCJsDBHP0+OO/lIaUUpRoFUsyaBZHQKSVAi6g/Tt1fZQoaAZoCWgPQwjx2M9iKZLuv5SGlFKUaBVLMmgWR0CklLwOFxn4dX2UKGgGaAloD0MIv9GOG36367+UhpRSlGgVSzJoFkdApJa59gF5fXV9lChoBmgJaA9DCLTk8bT8QPW/lIaUUpRoFUsyaBZHQKSWdPTodMl1fZQoaAZoCWgPQwhgAUwZOKDtv5SGlFKUaBVLMmgWR0Ckli/j81n/dX2UKGgGaAloD0MIQ5Hu5xQk9L+UhpRSlGgVSzJoFkdApJXpvWH1vnV9lChoBmgJaA9DCFIst7QaEuu/lIaUUpRoFUsyaBZHQKSX5p8F6iV1fZQoaAZoCWgPQwieCOI8nMDcv5SGlFKUaBVLMmgWR0Ckl6G1IAfddX2UKGgGaAloD0MIL9/6sN4o7b+UhpRSlGgVSzJoFkdApJdcmBvrGHV9lChoBmgJaA9DCAsqqn6l8+q/lIaUUpRoFUsyaBZHQKSXFkXDWLB1fZQoaAZoCWgPQwhwtrkxPaH/v5SGlFKUaBVLMmgWR0CkmQu1ndwedX2UKGgGaAloD0MI0XXhB+fT9L+UhpRSlGgVSzJoFkdApJjGrjo6jnV9lChoBmgJaA9DCNZ0PdF1IfC/lIaUUpRoFUsyaBZHQKSYgZKnNxF1fZQoaAZoCWgPQwjcLF4sDBHnv5SGlFKUaBVLMmgWR0CkmDtcW0qpdX2UKGgGaAloD0MI3sg88gcD87+UhpRSlGgVSzJoFkdApJo207bL2nV9lChoBmgJaA9DCM/26A33Ufm/lIaUUpRoFUsyaBZHQKSZ8c0+C9R1fZQoaAZoCWgPQwgRABx79pz5v5SGlFKUaBVLMmgWR0Ckmay8rZrYdX2UKGgGaAloD0MI+KkqNBAL+L+UhpRSlGgVSzJoFkdApJlmexwAEXV9lChoBmgJaA9DCOHUB5J3Dt6/lIaUUpRoFUsyaBZHQKSbZb/wRXh1fZQoaAZoCWgPQwjX22YqxMMAwJSGlFKUaBVLMmgWR0CkmyC9IwuedX2UKGgGaAloD0MIzQTDuYYZ8r+UhpRSlGgVSzJoFkdApJrbjxTbWXV9lChoBmgJaA9DCK5/12fO+u+/lIaUUpRoFUsyaBZHQKSalUxVQyh1fZQoaAZoCWgPQwhlNsgkIyf/v5SGlFKUaBVLMmgWR0CknI8yvcJudX2UKGgGaAloD0MIc2cmGM7187+UhpRSlGgVSzJoFkdApJxKL61stXV9lChoBmgJaA9DCBeBsb6Byd6/lIaUUpRoFUsyaBZHQKScBQ2MsH11fZQoaAZoCWgPQwhSms3jMBjrv5SGlFKUaBVLMmgWR0Ckm77hm5DrdX2UKGgGaAloD0MI9+l4zEAl87+UhpRSlGgVSzJoFkdApJ28NayKN3V9lChoBmgJaA9DCGDHf4EggPu/lIaUUpRoFUsyaBZHQKSddzbN8md1fZQoaAZoCWgPQwhkc9U8R2Txv5SGlFKUaBVLMmgWR0CknTIvSMLndX2UKGgGaAloD0MIgA9eu7Th57+UhpRSlGgVSzJoFkdApJzsBEKE4HV9lChoBmgJaA9DCESjO4idqfi/lIaUUpRoFUsyaBZHQKSe6CDmKZV1fZQoaAZoCWgPQwgXSFD8GPPvv5SGlFKUaBVLMmgWR0CknqMsQNCrdX2UKGgGaAloD0MIilqaWyFs8r+UhpRSlGgVSzJoFkdApJ5eFDfFaXV9lChoBmgJaA9DCFch5SfVvva/lIaUUpRoFUsyaBZHQKSeF+YtxuN1fZQoaAZoCWgPQwhqoWRyaqf1v5SGlFKUaBVLMmgWR0CkoBAvDgqFdX2UKGgGaAloD0MIje4gdqZQ5L+UhpRSlGgVSzJoFkdApJ/LNliBoXV9lChoBmgJaA9DCCzzVl2Hqvi/lIaUUpRoFUsyaBZHQKSfhg3Lmp51fZQoaAZoCWgPQwh2/YLdsO31v5SGlFKUaBVLMmgWR0Cknz/Z/Tb4dX2UKGgGaAloD0MIYye8BKc+/L+UhpRSlGgVSzJoFkdApKE207bL2nV9lChoBmgJaA9DCPQau0T11gLAlIaUUpRoFUsyaBZHQKSg8b6xgRd1fZQoaAZoCWgPQwiKWMSww1jzv5SGlFKUaBVLMmgWR0CkoKyoOx0NdX2UKGgGaAloD0MIGHjuPVzy9b+UhpRSlGgVSzJoFkdApKBmiQDFInV9lChoBmgJaA9DCIdSexFtB/a/lIaUUpRoFUsyaBZHQKSiW3d9Dx91fZQoaAZoCWgPQwjnb0IhAo76v5SGlFKUaBVLMmgWR0CkohZnlGPQdX2UKGgGaAloD0MIdxIR/kUQ/7+UhpRSlGgVSzJoFkdApKHRRQ79ynV9lChoBmgJaA9DCDYjg9xFmPS/lIaUUpRoFUsyaBZHQKShiyrxRVJ1fZQoaAZoCWgPQwiDF30Facb+v5SGlFKUaBVLMmgWR0Cko4WvbGm2dX2UKGgGaAloD0MIXOhKBKr/9b+UhpRSlGgVSzJoFkdApKNAoCuEEnV9lChoBmgJaA9DCInOMotQbPm/lIaUUpRoFUsyaBZHQKSi+1tO2y91fZQoaAZoCWgPQwgijQqcbOMAwJSGlFKUaBVLMmgWR0CkorUQsf7rdX2UKGgGaAloD0MIJxdjYB3H67+UhpRSlGgVSzJoFkdApKSp/ViF03V9lChoBmgJaA9DCJ4KuOf5E/C/lIaUUpRoFUsyaBZHQKSkZQAMlTp1fZQoaAZoCWgPQwhZh6OrdPfuv5SGlFKUaBVLMmgWR0CkpB/Z26kJdX2UKGgGaAloD0MIlumXiLcO9L+UhpRSlGgVSzJoFkdApKPZpnHvMXV9lChoBmgJaA9DCBk6dlCJq/K/lIaUUpRoFUsyaBZHQKSlzcnE2pB1fZQoaAZoCWgPQwheTDPd62T1v5SGlFKUaBVLMmgWR0CkpYi48U22dX2UKGgGaAloD0MIDtqrj4f+97+UhpRSlGgVSzJoFkdApKVDgydnTXV9lChoBmgJaA9DCIxK6gQ0EeC/lIaUUpRoFUsyaBZHQKSk/U96kZd1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88d9d53c1b3394deabb1a2664558512c4ce58f0f6f3613751e45eee253e06141
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c02e6a7e17d7074dbb7eb169ee09fc84f068c8f08e14f745a739ab55db28afdd
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f15df5b7dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f15df5bb090>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677260794222826452, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANLXMPgp0sDvsBg8/NLXMPgp0sDvsBg8/NLXMPgp0sDvsBg8/NLXMPgp0sDvsBg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXDzLv+xuJj/Fyac/Mqg+P+GVkb/fxF2/VdCYv1xN4b4nk54/s2KeP6sYrb5ILtg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9ro0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9ro0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9ro0tcw+CnSwO+wGDz9VZQq8OpfQOtQ+9rqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39981997 0.00538493 0.55869937]\n [0.39981997 0.00538493 0.55869937]\n [0.39981997 0.00538493 0.55869937]\n [0.39981997 0.00538493 0.55869937]]", "desired_goal": "[[-1.5877795 0.65013003 1.310845 ]\n [ 0.74475396 -1.1373864 -0.86628526]\n [-1.1938578 -0.44004333 1.2388657 ]\n [ 1.2373871 -0.33807883 1.6889124 ]]", "observation": "[[ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]\n [ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]\n [ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]\n [ 0.39981997 0.00538493 0.55869937 -0.00844701 0.00159142 -0.0018787 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAabqUvQJaCT2Yh548njTEPePCuD1kF1M+RzcLPl9pSrs1AzQ+0yn8PfE1xTzGVA8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07262117 0.0335331 0.01935177]\n [ 0.09580348 0.09021547 0.20614392]\n [ 0.13595305 -0.00308856 0.17579348]\n [ 0.12312665 0.02407357 0.13997182]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+FROe0oOAcCUhpRSlIwBbJRLMowBdJRHQKSJ1TnaFmF1fZQoaAZoCWgPQwj+e/DapQ3ov5SGlFKUaBVLMmgWR0CkiZA/1QIldX2UKGgGaAloD0MI3dCUnX7Q8L+UhpRSlGgVSzJoFkdApIlLcbiqAHV9lChoBmgJaA9DCJfjFYieFPa/lIaUUpRoFUsyaBZHQKSJBU3n6mB1fZQoaAZoCWgPQwhbJy7HKxDzv5SGlFKUaBVLMmgWR0Ckivuy3Td+dX2UKGgGaAloD0MIJ2a9GMpJ9r+UhpRSlGgVSzJoFkdApIq2r0aqCHV9lChoBmgJaA9DCOP+I9OhE/S/lIaUUpRoFUsyaBZHQKSKcZP2wmp1fZQoaAZoCWgPQwiBzw8jhEfxv5SGlFKUaBVLMmgWR0CkiitgSeyzdX2UKGgGaAloD0MIg2kYPiKm8r+UhpRSlGgVSzJoFkdApIwnVI7NjnV9lChoBmgJaA9DCLpOIy2VN/e/lIaUUpRoFUsyaBZHQKSL4lImPYF1fZQoaAZoCWgPQwgUdlH0wIf7v5SGlFKUaBVLMmgWR0Cki504zabndX2UKGgGaAloD0MICYz1DUyu9L+UhpRSlGgVSzJoFkdApItXFDOTq3V9lChoBmgJaA9DCG9GzVfJR/C/lIaUUpRoFUsyaBZHQKSNUPqcEvF1fZQoaAZoCWgPQwhHV+nuOtv0v5SGlFKUaBVLMmgWR0CkjQv0AcT8dX2UKGgGaAloD0MIN+Fembdq8b+UhpRSlGgVSzJoFkdApIzG2y9mH3V9lChoBmgJaA9DCMDQI0bPLea/lIaUUpRoFUsyaBZHQKSMgKm8/Ux1fZQoaAZoCWgPQwipFDsahzr3v5SGlFKUaBVLMmgWR0CkjnhUaQ3hdX2UKGgGaAloD0MI3ze+9swS8L+UhpRSlGgVSzJoFkdApI4zSiM5wXV9lChoBmgJaA9DCCOgwhGk0vO/lIaUUpRoFUsyaBZHQKSN7jJ+2E11fZQoaAZoCWgPQwiE1O3sK4/vv5SGlFKUaBVLMmgWR0Ckjaf/WDpUdX2UKGgGaAloD0MIPSgoRSt38r+UhpRSlGgVSzJoFkdApI+ooRZlnXV9lChoBmgJaA9DCHwnZr0YSuO/lIaUUpRoFUsyaBZHQKSPY5AhStN1fZQoaAZoCWgPQwhnRGlv8IUAwJSGlFKUaBVLMmgWR0Ckjx5/kNnXdX2UKGgGaAloD0MICaUvhJz347+UhpRSlGgVSzJoFkdApI7YUpNKy3V9lChoBmgJaA9DCFERp5Nsdde/lIaUUpRoFUsyaBZHQKSQ17iQ1aZ1fZQoaAZoCWgPQwiLM4Y5QRv1v5SGlFKUaBVLMmgWR0CkkJK6WgOCdX2UKGgGaAloD0MImkS94NOc5b+UhpRSlGgVSzJoFkdApJBNmlImPnV9lChoBmgJaA9DCFBUNqyprPm/lIaUUpRoFUsyaBZHQKSQB2/SH/N1fZQoaAZoCWgPQwjwTdNnB9z4v5SGlFKUaBVLMmgWR0CkkgE43m3fdX2UKGgGaAloD0MIKSSZ1Ttc+r+UhpRSlGgVSzJoFkdApJG8KkVN6HV9lChoBmgJaA9DCKLrwg/Op+q/lIaUUpRoFUsyaBZHQKSRdxDst051fZQoaAZoCWgPQwiM1lHVBNHlv5SGlFKUaBVLMmgWR0CkkTDRMN+cdX2UKGgGaAloD0MIPtAKDFnd5r+UhpRSlGgVSzJoFkdApJMsNYr8SHV9lChoBmgJaA9DCEFkkSbewfG/lIaUUpRoFUsyaBZHQKSS5x4IKMN1fZQoaAZoCWgPQwj6J7hYUYP2v5SGlFKUaBVLMmgWR0CkkqHyVfNSdX2UKGgGaAloD0MIlSpR9pYy/b+UhpRSlGgVSzJoFkdApJJbupjtonV9lChoBmgJaA9DCJHz/j9OGO+/lIaUUpRoFUsyaBZHQKSUWSRKYiR1fZQoaAZoCWgPQwjZQ/tYwS/5v5SGlFKUaBVLMmgWR0CklBPuG9HudX2UKGgGaAloD0MIF9hjIqVZ9L+UhpRSlGgVSzJoFkdApJPOw3YL9nV9lChoBmgJaA9DCGpQNA9gEeq/lIaUUpRoFUsyaBZHQKSTiJUo8ZF1fZQoaAZoCWgPQwh0X85sV2jvv5SGlFKUaBVLMmgWR0CklYwo9cKPdX2UKGgGaAloD0MIExCTcCFvAMCUhpRSlGgVSzJoFkdApJVHRqoIfXV9lChoBmgJaA9DCJsDBHP0+OO/lIaUUpRoFUsyaBZHQKSVAi6g/Tt1fZQoaAZoCWgPQwjx2M9iKZLuv5SGlFKUaBVLMmgWR0CklLwOFxn4dX2UKGgGaAloD0MIv9GOG36367+UhpRSlGgVSzJoFkdApJa59gF5fXV9lChoBmgJaA9DCLTk8bT8QPW/lIaUUpRoFUsyaBZHQKSWdPTodMl1fZQoaAZoCWgPQwhgAUwZOKDtv5SGlFKUaBVLMmgWR0Ckli/j81n/dX2UKGgGaAloD0MIQ5Hu5xQk9L+UhpRSlGgVSzJoFkdApJXpvWH1vnV9lChoBmgJaA9DCFIst7QaEuu/lIaUUpRoFUsyaBZHQKSX5p8F6iV1fZQoaAZoCWgPQwieCOI8nMDcv5SGlFKUaBVLMmgWR0Ckl6G1IAfddX2UKGgGaAloD0MIL9/6sN4o7b+UhpRSlGgVSzJoFkdApJdcmBvrGHV9lChoBmgJaA9DCAsqqn6l8+q/lIaUUpRoFUsyaBZHQKSXFkXDWLB1fZQoaAZoCWgPQwhwtrkxPaH/v5SGlFKUaBVLMmgWR0CkmQu1ndwedX2UKGgGaAloD0MI0XXhB+fT9L+UhpRSlGgVSzJoFkdApJjGrjo6jnV9lChoBmgJaA9DCNZ0PdF1IfC/lIaUUpRoFUsyaBZHQKSYgZKnNxF1fZQoaAZoCWgPQwjcLF4sDBHnv5SGlFKUaBVLMmgWR0CkmDtcW0qpdX2UKGgGaAloD0MI3sg88gcD87+UhpRSlGgVSzJoFkdApJo207bL2nV9lChoBmgJaA9DCM/26A33Ufm/lIaUUpRoFUsyaBZHQKSZ8c0+C9R1fZQoaAZoCWgPQwgRABx79pz5v5SGlFKUaBVLMmgWR0Ckmay8rZrYdX2UKGgGaAloD0MI+KkqNBAL+L+UhpRSlGgVSzJoFkdApJlmexwAEXV9lChoBmgJaA9DCOHUB5J3Dt6/lIaUUpRoFUsyaBZHQKSbZb/wRXh1fZQoaAZoCWgPQwjX22YqxMMAwJSGlFKUaBVLMmgWR0CkmyC9IwuedX2UKGgGaAloD0MIzQTDuYYZ8r+UhpRSlGgVSzJoFkdApJrbjxTbWXV9lChoBmgJaA9DCK5/12fO+u+/lIaUUpRoFUsyaBZHQKSalUxVQyh1fZQoaAZoCWgPQwhlNsgkIyf/v5SGlFKUaBVLMmgWR0CknI8yvcJudX2UKGgGaAloD0MIc2cmGM7187+UhpRSlGgVSzJoFkdApJxKL61stXV9lChoBmgJaA9DCBeBsb6Byd6/lIaUUpRoFUsyaBZHQKScBQ2MsH11fZQoaAZoCWgPQwhSms3jMBjrv5SGlFKUaBVLMmgWR0Ckm77hm5DrdX2UKGgGaAloD0MI9+l4zEAl87+UhpRSlGgVSzJoFkdApJ28NayKN3V9lChoBmgJaA9DCGDHf4EggPu/lIaUUpRoFUsyaBZHQKSddzbN8md1fZQoaAZoCWgPQwhkc9U8R2Txv5SGlFKUaBVLMmgWR0CknTIvSMLndX2UKGgGaAloD0MIgA9eu7Th57+UhpRSlGgVSzJoFkdApJzsBEKE4HV9lChoBmgJaA9DCESjO4idqfi/lIaUUpRoFUsyaBZHQKSe6CDmKZV1fZQoaAZoCWgPQwgXSFD8GPPvv5SGlFKUaBVLMmgWR0CknqMsQNCrdX2UKGgGaAloD0MIilqaWyFs8r+UhpRSlGgVSzJoFkdApJ5eFDfFaXV9lChoBmgJaA9DCFch5SfVvva/lIaUUpRoFUsyaBZHQKSeF+YtxuN1fZQoaAZoCWgPQwhqoWRyaqf1v5SGlFKUaBVLMmgWR0CkoBAvDgqFdX2UKGgGaAloD0MIje4gdqZQ5L+UhpRSlGgVSzJoFkdApJ/LNliBoXV9lChoBmgJaA9DCCzzVl2Hqvi/lIaUUpRoFUsyaBZHQKSfhg3Lmp51fZQoaAZoCWgPQwh2/YLdsO31v5SGlFKUaBVLMmgWR0Cknz/Z/Tb4dX2UKGgGaAloD0MIYye8BKc+/L+UhpRSlGgVSzJoFkdApKE207bL2nV9lChoBmgJaA9DCPQau0T11gLAlIaUUpRoFUsyaBZHQKSg8b6xgRd1fZQoaAZoCWgPQwiKWMSww1jzv5SGlFKUaBVLMmgWR0CkoKyoOx0NdX2UKGgGaAloD0MIGHjuPVzy9b+UhpRSlGgVSzJoFkdApKBmiQDFInV9lChoBmgJaA9DCIdSexFtB/a/lIaUUpRoFUsyaBZHQKSiW3d9Dx91fZQoaAZoCWgPQwjnb0IhAo76v5SGlFKUaBVLMmgWR0CkohZnlGPQdX2UKGgGaAloD0MIdxIR/kUQ/7+UhpRSlGgVSzJoFkdApKHRRQ79ynV9lChoBmgJaA9DCDYjg9xFmPS/lIaUUpRoFUsyaBZHQKShiyrxRVJ1fZQoaAZoCWgPQwiDF30Facb+v5SGlFKUaBVLMmgWR0Cko4WvbGm2dX2UKGgGaAloD0MIXOhKBKr/9b+UhpRSlGgVSzJoFkdApKNAoCuEEnV9lChoBmgJaA9DCInOMotQbPm/lIaUUpRoFUsyaBZHQKSi+1tO2y91fZQoaAZoCWgPQwgijQqcbOMAwJSGlFKUaBVLMmgWR0CkorUQsf7rdX2UKGgGaAloD0MIJxdjYB3H67+UhpRSlGgVSzJoFkdApKSp/ViF03V9lChoBmgJaA9DCJ4KuOf5E/C/lIaUUpRoFUsyaBZHQKSkZQAMlTp1fZQoaAZoCWgPQwhZh6OrdPfuv5SGlFKUaBVLMmgWR0CkpB/Z26kJdX2UKGgGaAloD0MIlumXiLcO9L+UhpRSlGgVSzJoFkdApKPZpnHvMXV9lChoBmgJaA9DCBk6dlCJq/K/lIaUUpRoFUsyaBZHQKSlzcnE2pB1fZQoaAZoCWgPQwheTDPd62T1v5SGlFKUaBVLMmgWR0CkpYi48U22dX2UKGgGaAloD0MIDtqrj4f+97+UhpRSlGgVSzJoFkdApKVDgydnTXV9lChoBmgJaA9DCIxK6gQ0EeC/lIaUUpRoFUsyaBZHQKSk/U96kZd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (504 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.4953951050527394, "std_reward": 0.2799226310804086, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-24T18:34:10.132236"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21856edb67f8e1dc2c9028b4e16e7fb4e01b9fbcb89c25d9f8bd52e3adc9d6ec
3
+ size 3056