fdurant commited on
Commit
68b896e
·
1 Parent(s): eff3fb4

feat: add docstring to EndpointHandler.__call__ ; when multiple inputs are sent, the output now also contains a token_list k/v pair for easier human inspection

Browse files
Files changed (3) hide show
  1. embed_two_chunks.sh +1 -1
  2. handler.py +31 -10
  3. test_endpoint.py +11 -4
embed_two_chunks.sh CHANGED
@@ -5,5 +5,5 @@ curl \
5
  --request POST \
6
  --url http://localhost:4999 \
7
  --header 'Content-Type: application/json' \
8
- --data '{"inputs": ["Please embed me", "And me too, please!"]}' \
9
  -w "\n"
 
5
  --request POST \
6
  --url http://localhost:4999 \
7
  --header 'Content-Type: application/json' \
8
+ --data '{"inputs": ["Please embed me", "En en en mij ook, alsjeblieft !!!"]}' \
9
  -w "\n"
handler.py CHANGED
@@ -7,6 +7,7 @@ import logging
7
 
8
  logger = logging.getLogger(__name__)
9
 
 
10
  MODEL = "fdurant/colbert-xm-for-inference-api"
11
 
12
  class EndpointHandler():
@@ -18,11 +19,25 @@ class EndpointHandler():
18
  nbits=2, # The number bits that each dimension encodes to.
19
  kmeans_niters=4, # Number of iterations for k-means clustering during quantization.
20
  nranks=-1, # Number of ranks (processors) to use for distributed computing; -1 uses all available CPUs/GPUs.
21
- checkpoint=MODEL,
22
  )
23
  self._checkpoint = Checkpoint(self._config.checkpoint, colbert_config=self._config, verbose=3)
24
 
25
  def __call__(self, data: Any) -> List[Dict[str, Any]]:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  inputs = data["inputs"]
27
  texts = []
28
  if isinstance(inputs, str):
@@ -35,31 +50,37 @@ class EndpointHandler():
35
 
36
  if len(texts) == 1:
37
  # It's a query
38
- logger.info(f"Query: {texts}")
39
  embedding = self._checkpoint.queryFromText(
40
  queries=texts,
41
  full_length_search=False, # Indicates whether to encode the query for a full-length search.
42
  )
43
- logger.info(f"Query embedding shape: {embedding.shape}")
44
  return [
45
  {"input": inputs, "query_embedding": embedding.tolist()[0]}
46
  ]
47
  elif len(texts) > 1:
48
  # It's a batch of chunks
49
  logger.info(f"Batch of chunks: {texts}")
50
- embeddings, token_counts = self._checkpoint.docFromText(
51
  docs=texts,
52
  bsize=self._config.bsize, # Batch size
53
  keep_dims=True, # Do NOT flatten the embeddings
54
  return_tokens=True, # Return the tokens as well
55
  )
56
- for text, embedding, token_count in zip(texts, embeddings, token_counts):
57
- logger.info(f"Chunk: {text}")
58
- logger.info(f"Chunk embedding shape: {embedding.shape}")
59
- logger.info(f"Chunk count: {token_count}")
 
 
 
 
 
 
60
  return [
61
- {"input": _input, "chunk_embedding": embedding.tolist(), "token_count": token_count.tolist()}
62
- for _input, embedding, token_count in zip(texts, embeddings, token_counts)
63
  ]
64
  else:
65
  raise ValueError("No data to process")
 
7
 
8
  logger = logging.getLogger(__name__)
9
 
10
+ # Hardcoded, I know
11
  MODEL = "fdurant/colbert-xm-for-inference-api"
12
 
13
  class EndpointHandler():
 
19
  nbits=2, # The number bits that each dimension encodes to.
20
  kmeans_niters=4, # Number of iterations for k-means clustering during quantization.
21
  nranks=-1, # Number of ranks (processors) to use for distributed computing; -1 uses all available CPUs/GPUs.
22
+ checkpoint=MODEL, # Path to the model checkpoint.
23
  )
24
  self._checkpoint = Checkpoint(self._config.checkpoint, colbert_config=self._config, verbose=3)
25
 
26
  def __call__(self, data: Any) -> List[Dict[str, Any]]:
27
+ """
28
+ data args:
29
+ inputs (:obj: `str`)
30
+ Return:
31
+ A :obj:`list` : will be serialized and returned.
32
+ When the input is a single query string, the returned list will contain a single dictionary with:
33
+ - input (:obj: `str`) : The input query.
34
+ - query_embedding (:obj: `list`) : The query embedding of shape (1, 32, 128).
35
+ When the input is a batch (= list) of chunk strings, the returned list will contain a dictionary for each chunk:
36
+ - input (:obj: `str`) : The input chunk.
37
+ - chunk_embedding (:obj: `list`) : The chunk embedding of shape (1, num_tokens, 128)
38
+ - token_ids (:obj: `list`) : The token ids.
39
+ - token_list (:obj: `list`) : The token list.
40
+ """
41
  inputs = data["inputs"]
42
  texts = []
43
  if isinstance(inputs, str):
 
50
 
51
  if len(texts) == 1:
52
  # It's a query
53
+ logger.debug(f"Query: {texts}")
54
  embedding = self._checkpoint.queryFromText(
55
  queries=texts,
56
  full_length_search=False, # Indicates whether to encode the query for a full-length search.
57
  )
58
+ logger.debug(f"Query embedding shape: {embedding.shape}")
59
  return [
60
  {"input": inputs, "query_embedding": embedding.tolist()[0]}
61
  ]
62
  elif len(texts) > 1:
63
  # It's a batch of chunks
64
  logger.info(f"Batch of chunks: {texts}")
65
+ embeddings, token_id_lists = self._checkpoint.docFromText(
66
  docs=texts,
67
  bsize=self._config.bsize, # Batch size
68
  keep_dims=True, # Do NOT flatten the embeddings
69
  return_tokens=True, # Return the tokens as well
70
  )
71
+ token_lists = []
72
+ for text, embedding, token_ids in zip(texts, embeddings, token_id_lists):
73
+ logger.debug(f"Chunk: {text}")
74
+ logger.debug(f"Chunk embedding shape: {embedding.shape}")
75
+ logger.debug(f"Chunk token ids: {token_ids}")
76
+ token_list = self._checkpoint.doc_tokenizer.tok.convert_ids_to_tokens(token_ids)
77
+ token_lists.append(token_list)
78
+ logger.debug(f"Chunk tokens: {token_list}")
79
+ # reconstructed_text = self._checkpoint.doc_tokenizer.tok.decode(token_count)
80
+ # logger.debug(f"Reconstructed text with special tokens: {reconstructed_text}")
81
  return [
82
+ {"input": _input, "chunk_embedding": embedding.tolist(), "token_ids": token_ids.tolist(), "token_list": token_list}
83
+ for _input, embedding, token_ids, token_list in zip(texts, embeddings, token_id_lists, token_lists)
84
  ]
85
  else:
86
  raise ValueError("No data to process")
test_endpoint.py CHANGED
@@ -40,7 +40,8 @@ def test_query_returns_expected_result():
40
 
41
  def test_batch_returns_expected_result():
42
  chunks = ["try me", "try me again and again and again"]
43
- expected_token_counts = [11, 11] # Including start and stop tokens, I presume. Not exactly clear!
 
44
  payload = {"inputs": chunks}
45
 
46
  response = requests.request("POST", URL, json=payload, headers=HEADERS)
@@ -56,12 +57,18 @@ def test_batch_returns_expected_result():
56
 
57
  # Check chunk embedding (actually a list of embeddings, one per token in the chunk)
58
  chunk_embedding = response_chunk.get("chunk_embedding")
59
- token_count = response_chunk.get("token_count")
60
  assert isinstance(chunk_embedding, list)
61
- assert len(chunk_embedding) == len(token_count)
62
- assert len(token_count) == expected_token_counts[i]
 
63
 
64
  # Check first of the token embeddings
65
  first_token_embedding = chunk_embedding[0]
66
  assert len(first_token_embedding) == 128
67
  assert all(isinstance(value, float) for value in first_token_embedding)
 
 
 
 
 
 
40
 
41
  def test_batch_returns_expected_result():
42
  chunks = ["try me", "try me again and again and again"]
43
+ length_of_longest_chunk = 11 # Including special tokens and padding
44
+ doc_maxlen=512
45
  payload = {"inputs": chunks}
46
 
47
  response = requests.request("POST", URL, json=payload, headers=HEADERS)
 
57
 
58
  # Check chunk embedding (actually a list of embeddings, one per token in the chunk)
59
  chunk_embedding = response_chunk.get("chunk_embedding")
60
+ token_ids = response_chunk.get("token_ids")
61
  assert isinstance(chunk_embedding, list)
62
+ assert len(chunk_embedding) == len(token_ids)
63
+ assert len(token_ids) == length_of_longest_chunk
64
+ assert len(token_ids) <= doc_maxlen
65
 
66
  # Check first of the token embeddings
67
  first_token_embedding = chunk_embedding[0]
68
  assert len(first_token_embedding) == 128
69
  assert all(isinstance(value, float) for value in first_token_embedding)
70
+
71
+ # Check token list
72
+ token_list = response_chunk.get("token_list")
73
+ assert len(token_ids) == len(token_list)
74
+ assert all(isinstance(token, str) for token in token_list)