File size: 1,100 Bytes
31cb98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
license: apache-2.0
datasets:
- fine-tuned/jina-embeddings-v2-base-en-1752024-13s3-webapp
- allenai/c4
language:
- en
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- Medicine
- Biomedical
- Research
- Pharmacology
- Pathology
---
This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-en**](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) designed for the following use case:

medical and biomedical sciences knowledge base

## How to Use
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

model = SentenceTransformer(
    'fine-tuned/jina-embeddings-v2-base-en-1752024-13s3-webapp',
    trust_remote_code=True
)

embeddings = model.encode([
    'first text to embed',
    'second text to embed'
])
print(cos_sim(embeddings[0], embeddings[1]))
```