File size: 16,733 Bytes
c2ecfb5
 
 
 
 
 
 
 
28dec30
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
28dec30
c2ecfb5
28dec30
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28dec30
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28dec30
c2ecfb5
 
 
28dec30
 
 
2f2c44c
 
 
 
 
 
 
28dec30
 
2f2c44c
 
 
 
 
 
 
 
 
 
 
28dec30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28dec30
340f0a0
 
c2ecfb5
 
 
 
 
 
 
 
28dec30
 
 
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28dec30
 
c2ecfb5
 
 
 
28dec30
c2ecfb5
 
 
 
 
 
28dec30
2f2c44c
c2ecfb5
 
 
 
 
28dec30
 
 
 
 
c2ecfb5
 
 
 
 
28dec30
 
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28dec30
 
c2ecfb5
 
 
 
 
28dec30
 
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28dec30
 
 
 
 
 
 
 
c2ecfb5
 
 
 
 
 
 
28dec30
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28dec30
 
c2ecfb5
 
 
 
 
 
 
 
 
 
28dec30
 
 
c2ecfb5
 
28dec30
 
c2ecfb5
 
 
 
28dec30
c2ecfb5
 
c4a514f
2f2c44c
c2ecfb5
 
 
 
 
 
 
 
2f2c44c
28dec30
2f2c44c
 
 
 
 
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import io
import math
from typing import TYPE_CHECKING, Callable, List
from PIL import Image
import numpy as np

import torch

from einops import rearrange
from flux_emphasis import get_weighted_text_embeddings_flux

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.benchmark_limit = 20
torch.set_float32_matmul_precision("high")
from torch._dynamo import config
from torch._inductor import config as ind_config
from pybase64 import standard_b64decode

config.cache_size_limit = 10000000000
ind_config.shape_padding = True
from loguru import logger
from image_encoder import ImageEncoder
from torchvision.transforms import functional as TF
from tqdm import tqdm
from util import (
    ModelSpec,
    into_device,
    into_dtype,
    load_config_from_path,
    load_models_from_config,
)


if TYPE_CHECKING:
    from modules.conditioner import HFEmbedder
    from modules.flux_model import Flux
    from modules.autoencoder import AutoEncoder


class FluxPipeline:
    def __init__(
        self,
        name: str,
        offload: bool = False,
        clip: "HFEmbedder" = None,
        t5: "HFEmbedder" = None,
        model: "Flux" = None,
        ae: "AutoEncoder" = None,
        dtype: torch.dtype = torch.float16,
        verbose: bool = False,
        flux_device: torch.device | str = "cuda:0",
        ae_device: torch.device | str = "cuda:1",
        clip_device: torch.device | str = "cuda:1",
        t5_device: torch.device | str = "cuda:1",
        config: ModelSpec = None,
    ):

        self.name = name
        self.device_flux = (
            flux_device
            if isinstance(flux_device, torch.device)
            else torch.device(flux_device)
        )
        self.device_ae = (
            ae_device
            if isinstance(ae_device, torch.device)
            else torch.device(ae_device)
        )
        self.device_clip = (
            clip_device
            if isinstance(clip_device, torch.device)
            else torch.device(clip_device)
        )
        self.device_t5 = (
            t5_device
            if isinstance(t5_device, torch.device)
            else torch.device(t5_device)
        )
        self.dtype = dtype
        self.offload = offload
        self.clip: "HFEmbedder" = clip
        self.t5: "HFEmbedder" = t5
        self.model: "Flux" = model
        self.ae: "AutoEncoder" = ae
        self.rng = torch.Generator(device="cpu")
        self.img_encoder = ImageEncoder()
        self.verbose = verbose
        self.ae_dtype = torch.bfloat16
        self.config = config
        self.offload_text_encoder = config.offload_text_encoder
        self.offload_vae = config.offload_vae
        self.offload_flow = config.offload_flow
        if not self.offload_flow:
            self.model.to(self.device_flux)
        if not self.offload_vae:
            self.ae.to(self.device_ae)
        if not self.offload_text_encoder:
            self.clip.to(self.device_clip)
            self.t5.to(self.device_t5)

        if self.config.compile_blocks or self.config.compile_extras:
            if not self.config.prequantized_flow:
                print("Warmups for compile...")
                warmup_dict = dict(
                    prompt="Street photography portrait of a beautiful asian woman in traditional clothing with golden hairpin and blue eyes, wearing a red kimono with dragon patterns",
                    height=1024,
                    width=1024,
                    num_steps=30,
                    guidance=3.5,
                    seed=10,
                )
                self.generate(**warmup_dict)
            to_gpu_extras = [
                "vector_in",
                "img_in",
                "txt_in",
                "time_in",
                "guidance_in",
                "final_layer",
                "pe_embedder",
            ]
            if self.config.compile_blocks:
                for block in self.model.double_blocks:
                    block.compile()
                for block in self.model.single_blocks:
                    block.compile()
            if self.config.compile_extras:
                for extra in to_gpu_extras:
                    getattr(self.model, extra).compile()

    @torch.inference_mode()
    def prepare(
        self,
        img: torch.Tensor,
        prompt: str | list[str],
        target_device: torch.device = torch.device("cuda:0"),
        target_dtype: torch.dtype = torch.float16,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        bs, c, h, w = img.shape
        if bs == 1 and not isinstance(prompt, str):
            bs = len(prompt)
        img = img.unfold(2, 2, 2).unfold(3, 2, 2).permute(0, 2, 3, 1, 4, 5)
        img = img.reshape(img.shape[0], -1, img.shape[3] * img.shape[4] * img.shape[5])
        assert img.shape == (
            bs,
            (h // 2) * (w // 2),
            c * 2 * 2,
        ), f"{img.shape} != {(bs, (h//2)*(w//2), c*2*2)}"
        if img.shape[0] == 1 and bs > 1:
            img = img[None].repeat_interleave(bs, dim=0)

        img_ids = torch.zeros(
            h // 2, w // 2, 3, device=target_device, dtype=target_dtype
        )
        img_ids[..., 1] = (
            img_ids[..., 1]
            + torch.arange(h // 2, device=target_device, dtype=target_dtype)[:, None]
        )
        img_ids[..., 2] = (
            img_ids[..., 2]
            + torch.arange(w // 2, device=target_device, dtype=target_dtype)[None, :]
        )

        img_ids = img_ids[None].repeat(bs, 1, 1, 1).flatten(1, 2)
        if self.offload_text_encoder:
            self.clip.cuda(self.device_clip)
            self.t5.cuda(self.device_t5)
        vec, txt, txt_ids = get_weighted_text_embeddings_flux(
            self,
            prompt,
            num_images_per_prompt=bs,
            device=self.device_clip,
            target_device=target_device,
            target_dtype=target_dtype,
        )
        if self.offload_text_encoder:
            self.clip.to("cpu")
            self.t5.to("cpu")
            torch.cuda.empty_cache()
        return img, img_ids, vec, txt, txt_ids

    @torch.inference_mode()
    def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
        return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)

    def get_lin_function(
        self, x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
    ) -> Callable[[float], float]:
        m = (y2 - y1) / (x2 - x1)
        b = y1 - m * x1
        return lambda x: m * x + b

    @torch.inference_mode()
    def get_schedule(
        self,
        num_steps: int,
        image_seq_len: int,
        base_shift: float = 0.5,
        max_shift: float = 1.15,
        shift: bool = True,
    ) -> list[float]:
        # extra step for zero
        timesteps = torch.linspace(1, 0, num_steps + 1)

        # shifting the schedule to favor high timesteps for higher signal images
        if shift:
            # eastimate mu based on linear estimation between two points
            mu = self.get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
            timesteps = self.time_shift(mu, 1.0, timesteps)

        return timesteps.tolist()

    @torch.inference_mode()
    def get_noise(
        self,
        num_samples: int,
        height: int,
        width: int,
        generator: torch.Generator,
        dtype=None,
        device=None,
    ):
        if device is None:
            device = self.device_flux
        if dtype is None:
            dtype = self.dtype
        return torch.randn(
            num_samples,
            16,
            # allow for packing
            2 * math.ceil(height / 16),
            2 * math.ceil(width / 16),
            device=device,
            dtype=dtype,
            generator=generator,
            requires_grad=False,
        )

    @torch.inference_mode()
    def into_bytes(self, x: torch.Tensor) -> io.BytesIO:
        # bring into PIL format and save
        torch.cuda.synchronize()
        x = x.contiguous()
        x = x.clamp(-1, 1)
        num_images = x.shape[0]
        images: List[torch.Tensor] = []
        for i in range(num_images):
            x = x[i].add(1.0).mul(127.5).clamp(0, 255).contiguous().type(torch.uint8)
            images.append(x)
        if len(images) == 1:
            im = images[0]
        else:
            im = torch.vstack(images)

        torch.cuda.synchronize()
        im = self.img_encoder.encode_torch(im, quality=99)
        images.clear()
        return io.BytesIO(im)

    @torch.inference_mode()
    def vae_decode(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor:
        if self.offload_vae:
            self.ae.to(self.device_ae)
            x = x.to(self.device_ae)
        else:
            x = x.to(self.device_ae)
        x = self.unpack(x.float(), height, width)
        with torch.autocast(
            device_type=self.device_ae.type, dtype=torch.bfloat16, cache_enabled=False
        ):
            x = self.ae.decode(x)
        if self.offload_vae:
            self.ae.to("cpu")
            torch.cuda.empty_cache()
        return x

    def unpack(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor:
        return rearrange(
            x,
            "b (h w) (c ph pw) -> b c (h ph) (w pw)",
            h=math.ceil(height / 16),
            w=math.ceil(width / 16),
            ph=2,
            pw=2,
        )

    @torch.inference_mode()
    def resize_center_crop(
        self, img: torch.Tensor, height: int, width: int
    ) -> torch.Tensor:
        img = TF.resize(img, min(width, height))
        img = TF.center_crop(img, (height, width))
        return img

    @torch.inference_mode()
    def preprocess_latent(
        self,
        init_image: torch.Tensor | np.ndarray = None,
        height: int = 720,
        width: int = 1024,
        num_steps: int = 20,
        strength: float = 1.0,
        generator: torch.Generator = None,
        num_images: int = 1,
    ) -> tuple[torch.Tensor, List[float]]:
        # prepare input

        if init_image is not None:
            if isinstance(init_image, np.ndarray):
                init_image = torch.from_numpy(init_image)

            init_image = (
                init_image.permute(2, 0, 1)
                .contiguous()
                .to(self.device_ae, dtype=self.ae_dtype)
                .div(127.5)
                .sub(1)[None, ...]
            )
            init_image = self.resize_center_crop(init_image, height, width)
            with torch.autocast(
                device_type=self.device_ae.type,
                dtype=torch.bfloat16,
                cache_enabled=False,
            ):
                if self.offload_vae:
                    self.ae.to(self.device_ae)
                init_image = (
                    self.ae.encode(init_image)
                    .to(dtype=self.dtype, device=self.device_flux)
                    .repeat(num_images, 1, 1, 1)
                )
                if self.offload_vae:
                    self.ae.to("cpu")
                    torch.cuda.empty_cache()

        x = self.get_noise(
            num_images,
            height,
            width,
            device=self.device_flux,
            dtype=self.dtype,
            generator=generator,
        )
        timesteps = self.get_schedule(
            num_steps=num_steps,
            image_seq_len=x.shape[-1] * x.shape[-2] // 4,
            shift=(self.name != "flux-schnell"),
        )
        if init_image is not None:
            t_idx = int((1 - strength) * num_steps)
            t = timesteps[t_idx]
            timesteps = timesteps[t_idx:]
            x = t * x + (1.0 - t) * init_image
        return x, timesteps

    @torch.inference_mode()
    def generate(
        self,
        prompt: str,
        width: int = 720,
        height: int = 1024,
        num_steps: int = 24,
        guidance: float = 3.5,
        seed: int | None = None,
        init_image: torch.Tensor | str | None = None,
        strength: float = 1.0,
        silent: bool = False,
        num_images: int = 1,
        return_seed: bool = False,
    ) -> io.BytesIO:
        num_steps = 4 if self.name == "flux-schnell" else num_steps

        if isinstance(init_image, str):
            try:
                init_image = Image.open(init_image)
            except Exception as e:
                init_image = Image.open(io.BytesIO(standard_b64decode(init_image)))
            init_image = torch.from_numpy(np.array(init_image)).type(torch.uint8)

        # allow for packing and conversion to latent space
        height = 16 * (height // 16)
        width = 16 * (width // 16)
        if isinstance(seed, str):
            seed = int(seed)
        if seed is None:
            seed = self.rng.seed()
        logger.info(f"Generating with:\nSeed: {seed}\nPrompt: {prompt}")

        generator = torch.Generator(device=self.device_flux).manual_seed(seed)
        img, timesteps = self.preprocess_latent(
            init_image=init_image,
            height=height,
            width=width,
            num_steps=num_steps,
            strength=strength,
            generator=generator,
            num_images=num_images,
        )
        img, img_ids, vec, txt, txt_ids = map(
            lambda x: x.contiguous(),
            self.prepare(
                img=img,
                prompt=prompt,
                target_device=self.device_flux,
                target_dtype=self.dtype,
            ),
        )

        # this is ignored for schnell
        guidance_vec = torch.full(
            (img.shape[0],), guidance, device=self.device_flux, dtype=self.dtype
        )
        t_vec = None
        if self.offload_flow:
            self.model.to(self.device_flux)
        for t_curr, t_prev in tqdm(
            zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1, disable=silent
        ):
            if t_vec is None:
                t_vec = torch.full(
                    (img.shape[0],),
                    t_curr,
                    dtype=self.dtype,
                    device=self.device_flux,
                )
            else:
                t_vec = t_vec.reshape((img.shape[0],)).fill_(t_curr)
            pred = self.model.forward(
                img=img,
                img_ids=img_ids,
                txt=txt,
                txt_ids=txt_ids,
                y=vec,
                timesteps=t_vec,
                guidance=guidance_vec,
            )

            img = img + (t_prev - t_curr) * pred

        if self.offload_flow:
            self.model.to("cpu")
        torch.cuda.empty_cache()

        # decode latents to pixel space
        img = self.vae_decode(img, height, width)

        if return_seed:
            return self.into_bytes(img), seed
        return self.into_bytes(img)

    @classmethod
    def load_pipeline_from_config_path(
        cls, path: str, flow_model_path: str = None
    ) -> "FluxPipeline":
        with torch.inference_mode():
            config = load_config_from_path(path)
            if flow_model_path:
                config.ckpt_path = flow_model_path
            return cls.load_pipeline_from_config(config)

    @classmethod
    def load_pipeline_from_config(cls, config: ModelSpec) -> "FluxPipeline":
        from float8_quantize import quantize_flow_transformer_and_dispatch_float8

        with torch.inference_mode():
            print("flow_quantization_dtype", config.flow_quantization_dtype)
            print("prequantized_flow?", config.prequantized_flow)

            models = load_models_from_config(config)
            config = models.config
            flux_device = into_device(config.flux_device)
            ae_device = into_device(config.ae_device)
            clip_device = into_device(config.text_enc_device)
            t5_device = into_device(config.text_enc_device)
            flux_dtype = into_dtype(config.flow_dtype)
            flow_model = models.flow

            if not config.prequantized_flow:
                flow_model = quantize_flow_transformer_and_dispatch_float8(
                    flow_model, flux_device, offload_flow=config.offload_flow
                )
            else:
                flow_model.eval().requires_grad_(False)

        return cls(
            name=config.version,
            clip=models.clip,
            t5=models.t5,
            model=flow_model,
            ae=models.ae,
            dtype=flux_dtype,
            verbose=False,
            flux_device=flux_device,
            ae_device=ae_device,
            clip_device=clip_device,
            t5_device=t5_device,
            config=config,
        )