File size: 14,162 Bytes
28dec30 b6617b1 0f3134f 28dec30 340f0a0 b6617b1 28dec30 2f2c44c 28dec30 2f2c44c 28dec30 2f2c44c 28dec30 0f3134f 28dec30 b6617b1 28dec30 b6617b1 28dec30 b6617b1 28dec30 0f3134f 28dec30 0f3134f 28dec30 6d0762c 28dec30 6d0762c 28dec30 0f3134f 28dec30 0f3134f 28dec30 0f3134f 28dec30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import torch
import torch.nn as nn
from torchao.float8.float8_utils import (
amax_to_scale,
tensor_to_amax,
to_fp8_saturated,
)
from torch.nn import init
import math
from torch.compiler import is_compiling
from torch import __version__
from torch.version import cuda
from typing import TypeVar
IS_TORCH_2_4 = __version__ < (2, 4, 9)
LT_TORCH_2_4 = __version__ < (2, 4)
if LT_TORCH_2_4:
if not hasattr(torch, "_scaled_mm"):
raise RuntimeError(
"This version of PyTorch is not supported. Please upgrade to PyTorch 2.4 with CUDA 12.4 or later."
)
CUDA_VERSION = float(cuda) if cuda else 0
if CUDA_VERSION < 12.4:
raise RuntimeError(
f"This version of PyTorch is not supported. Please upgrade to PyTorch 2.4 with CUDA 12.4 or later got torch version {__version__} and CUDA version {cuda}."
)
try:
from cublas_ops import CublasLinear
except ImportError:
CublasLinear = type(None)
class F8Linear(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=torch.float16,
float8_dtype=torch.float8_e4m3fn,
float_weight: torch.Tensor = None,
float_bias: torch.Tensor = None,
num_scale_trials: int = 24,
input_float8_dtype=torch.float8_e5m2,
) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.float8_dtype = float8_dtype
self.input_float8_dtype = input_float8_dtype
self.input_scale_initialized = False
self.weight_initialized = False
self.max_value = torch.finfo(self.float8_dtype).max
self.input_max_value = torch.finfo(self.input_float8_dtype).max
factory_kwargs = {"dtype": dtype, "device": device}
if float_weight is None:
self.weight = nn.Parameter(
torch.empty((out_features, in_features), **factory_kwargs)
)
else:
self.weight = nn.Parameter(
float_weight, requires_grad=float_weight.requires_grad
)
if float_bias is None:
if bias:
self.bias = nn.Parameter(
torch.empty(out_features, **factory_kwargs),
)
else:
self.register_parameter("bias", None)
else:
self.bias = nn.Parameter(float_bias, requires_grad=float_bias.requires_grad)
self.num_scale_trials = num_scale_trials
self.input_amax_trials = torch.zeros(
num_scale_trials, requires_grad=False, device=device, dtype=torch.float32
)
self.trial_index = 0
self.register_buffer("scale", None)
self.register_buffer(
"input_scale",
None,
)
self.register_buffer(
"float8_data",
None,
)
self.scale_reciprocal = self.register_buffer("scale_reciprocal", None)
self.input_scale_reciprocal = self.register_buffer(
"input_scale_reciprocal", None
)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
sd = {k.replace(prefix, ""): v for k, v in state_dict.items()}
if "weight" in sd:
if (
"float8_data" not in sd
or sd["float8_data"] is None
and sd["weight"].shape == (self.out_features, self.in_features)
):
# Initialize as if it's an F8Linear that needs to be quantized
self._parameters["weight"] = nn.Parameter(
sd["weight"], requires_grad=False
)
if "bias" in sd:
self._parameters["bias"] = nn.Parameter(
sd["bias"], requires_grad=False
)
self.quantize_weight()
elif sd["float8_data"].shape == (
self.out_features,
self.in_features,
) and sd["weight"] == torch.zeros_like(sd["weight"]):
w = sd["weight"]
# Set the init values as if it's already quantized float8_data
self.float8_data = sd["float8_data"]
self._parameters["weight"] = nn.Parameter(
torch.zeros(
1,
dtype=w.dtype,
device=w.device,
requires_grad=False,
)
)
if "bias" in sd:
self._parameters["bias"] = nn.Parameter(
sd["bias"], requires_grad=False
)
self.weight_initialized = True
# Check if scales and reciprocals are initialized
if all(
key in sd
for key in [
"scale",
"input_scale",
"scale_reciprocal",
"input_scale_reciprocal",
]
):
self.scale = sd["scale"].float()
self.input_scale = sd["input_scale"].float()
self.scale_reciprocal = sd["scale_reciprocal"].float()
self.input_scale_reciprocal = sd["input_scale_reciprocal"].float()
self.input_scale_initialized = True
self.trial_index = self.num_scale_trials
else:
# If scales are not initialized, reset trials
self.input_scale_initialized = False
self.trial_index = 0
self.input_amax_trials = torch.zeros(
self.num_scale_trials, requires_grad=False, dtype=torch.float32
)
else:
raise RuntimeError(
f"Weight tensor not found or has incorrect shape in state dict: {sd.keys()}"
)
else:
raise RuntimeError(
"Weight tensor not found or has incorrect shape in state dict"
)
def quantize_weight(self):
if self.weight_initialized:
return
amax = tensor_to_amax(self.weight.data)
scale = amax_to_scale(amax, self.float8_dtype, self.weight.dtype)
self.float8_data = to_fp8_saturated(self.weight.data * scale, self.float8_dtype)
self.scale = scale.float()
self.weight_initialized = True
self.scale_reciprocal = self.scale.reciprocal().float()
self.weight.data = torch.zeros(
1, dtype=self.weight.dtype, device=self.weight.device, requires_grad=False
)
def quantize_input(self, x: torch.Tensor):
if self.input_scale_initialized:
return to_fp8_saturated(x * self.input_scale, self.input_float8_dtype)
elif self.trial_index < self.num_scale_trials:
amax = tensor_to_amax(x)
self.input_amax_trials[self.trial_index] = amax
self.trial_index += 1
self.input_scale = amax_to_scale(
self.input_amax_trials[: self.trial_index].max(),
self.input_float8_dtype,
self.weight.dtype,
)
self.input_scale_reciprocal = self.input_scale.reciprocal()
return to_fp8_saturated(x * self.input_scale, self.input_float8_dtype)
else:
self.input_scale = amax_to_scale(
self.input_amax_trials.max(), self.input_float8_dtype, self.weight.dtype
)
self.input_scale_reciprocal = self.input_scale.reciprocal()
self.input_scale_initialized = True
return to_fp8_saturated(x * self.input_scale, self.input_float8_dtype)
def reset_parameters(self) -> None:
if self.weight_initialized:
self.weight = nn.Parameter(
torch.empty(
(self.out_features, self.in_features),
**{
"dtype": self.weight.dtype,
"device": self.weight.device,
},
)
)
self.weight_initialized = False
self.input_scale_initialized = False
self.trial_index = 0
self.input_amax_trials.zero_()
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)
self.quantize_weight()
self.max_value = torch.finfo(self.float8_dtype).max
self.input_max_value = torch.finfo(self.input_float8_dtype).max
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.input_scale_initialized or is_compiling():
x = (
x.mul(self.input_scale)
.clamp(min=-self.input_max_value, max=self.input_max_value)
.type(self.input_float8_dtype)
)
else:
x = self.quantize_input(x)
prev_dims = x.shape[:-1]
x = x.view(-1, self.in_features)
# float8 matmul, much faster than float16 matmul w/ float32 accumulate on ADA devices!
out = torch._scaled_mm(
x,
self.float8_data.T,
scale_a=self.input_scale_reciprocal,
scale_b=self.scale_reciprocal,
bias=self.bias,
out_dtype=self.weight.dtype,
use_fast_accum=True,
)
if IS_TORCH_2_4:
out = out[0]
out = out.view(*prev_dims, self.out_features)
return out
@classmethod
def from_linear(
cls,
linear: nn.Linear,
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
) -> "F8Linear":
f8_lin = cls(
in_features=linear.in_features,
out_features=linear.out_features,
bias=linear.bias is not None,
device=linear.weight.device,
dtype=linear.weight.dtype,
float8_dtype=float8_dtype,
float_weight=linear.weight.data,
float_bias=(linear.bias.data if linear.bias is not None else None),
input_float8_dtype=input_float8_dtype,
)
f8_lin.quantize_weight()
return f8_lin
def recursive_swap_linears(
model: nn.Module,
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
) -> None:
"""
Recursively swaps all nn.Linear modules in the given model with F8Linear modules.
This function traverses the model's structure and replaces each nn.Linear
instance with an F8Linear instance, which uses 8-bit floating point
quantization for weights. The original linear layer's weights are deleted
after conversion to save memory.
Args:
model (nn.Module): The PyTorch model to modify.
Note:
This function modifies the model in-place. After calling this function,
all linear layers in the model will be using 8-bit quantization.
"""
for name, child in model.named_children():
if isinstance(child, nn.Linear) and not isinstance(
child, (F8Linear, CublasLinear)
):
setattr(
model,
name,
F8Linear.from_linear(
child,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
),
)
del child
else:
recursive_swap_linears(child)
@torch.inference_mode()
def quantize_flow_transformer_and_dispatch_float8(
flow_model: nn.Module,
device=torch.device("cuda"),
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
offload_flow=False,
) -> nn.Module:
"""
Quantize the flux flow transformer model (original BFL codebase version) and dispatch to the given device.
Iteratively pushes each module to device, evals, replaces linear layers with F8Linear except for final_layer, and quantizes.
Allows for fast dispatch to gpu & quantize without causing OOM on gpus with limited memory.
After dispatching, if offload_flow is True, offloads the model to cpu.
"""
for module in flow_model.double_blocks:
module.to(device)
module.eval()
recursive_swap_linears(
module, float8_dtype=float8_dtype, input_float8_dtype=input_float8_dtype
)
torch.cuda.empty_cache()
for module in flow_model.single_blocks:
module.to(device)
module.eval()
recursive_swap_linears(
module, float8_dtype=float8_dtype, input_float8_dtype=input_float8_dtype
)
torch.cuda.empty_cache()
to_gpu_extras = [
"vector_in",
"img_in",
"txt_in",
"time_in",
"guidance_in",
"final_layer",
"pe_embedder",
]
for module in to_gpu_extras:
m_extra = getattr(flow_model, module)
if m_extra is None:
continue
m_extra.to(device)
m_extra.eval()
if isinstance(m_extra, nn.Linear) and not isinstance(
m_extra, (F8Linear, CublasLinear)
):
setattr(
flow_model,
module,
F8Linear.from_linear(
m_extra,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
),
)
del m_extra
elif module != "final_layer":
recursive_swap_linears(
m_extra,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
)
torch.cuda.empty_cache()
if offload_flow:
flow_model.to("cpu")
torch.cuda.empty_cache()
return flow_model
|