File size: 16,009 Bytes
a71da07 00f5d2c a71da07 7a7b2c1 a71da07 00f5d2c a71da07 fee1af5 a71da07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import torch
from loguru import logger
from safetensors.torch import load_file
from tqdm import tqdm
try:
from cublas_ops import CublasLinear
except Exception as e:
CublasLinear = type(None)
from float8_quantize import F8Linear
from modules.flux_model import Flux
def swap_scale_shift(weight):
scale, shift = weight.chunk(2, dim=0)
new_weight = torch.cat([shift, scale], dim=0)
return new_weight
def check_if_lora_exists(state_dict, lora_name):
subkey = lora_name.split(".lora_A")[0].split(".lora_B")[0].split(".weight")[0]
for key in state_dict.keys():
if subkey in key:
return subkey
return False
def convert_if_lora_exists(new_state_dict, state_dict, lora_name, flux_layer_name):
if (original_stubkey := check_if_lora_exists(state_dict, lora_name)) != False:
weights_to_pop = [k for k in state_dict.keys() if original_stubkey in k]
for key in weights_to_pop:
key_replacement = key.replace(
original_stubkey, flux_layer_name.replace(".weight", "")
)
new_state_dict[key_replacement] = state_dict.pop(key)
return new_state_dict, state_dict
else:
return new_state_dict, state_dict
def convert_diffusers_to_flux_transformer_checkpoint(
diffusers_state_dict,
num_layers,
num_single_layers,
has_guidance=True,
prefix="",
):
original_state_dict = {}
# time_text_embed.timestep_embedder -> time_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.timestep_embedder.linear_1.weight",
"time_in.in_layer.weight",
)
# time_text_embed.text_embedder -> vector_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.text_embedder.linear_1.weight",
"vector_in.in_layer.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.text_embedder.linear_2.weight",
"vector_in.out_layer.weight",
)
if has_guidance:
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.guidance_embedder.linear_1.weight",
"guidance_in.in_layer.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}time_text_embed.guidance_embedder.linear_2.weight",
"guidance_in.out_layer.weight",
)
# context_embedder -> txt_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}context_embedder.weight",
"txt_in.weight",
)
# x_embedder -> img_in
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}x_embedder.weight",
"img_in.weight",
)
# double transformer blocks
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
# norms
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}norm1.linear.weight",
f"double_blocks.{i}.img_mod.lin.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}norm1_context.linear.weight",
f"double_blocks.{i}.txt_mod.lin.weight",
)
sample_q_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.to_q.lora_A.weight"
)
sample_q_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.to_q.lora_B.weight"
)
sample_k_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.to_k.lora_A.weight"
)
sample_k_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.to_k.lora_B.weight"
)
sample_v_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.to_v.lora_A.weight"
)
sample_v_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.to_v.lora_B.weight"
)
context_q_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.add_q_proj.lora_A.weight"
)
context_q_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.add_q_proj.lora_B.weight"
)
context_k_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.add_k_proj.lora_A.weight"
)
context_k_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.add_k_proj.lora_B.weight"
)
context_v_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.add_v_proj.lora_A.weight"
)
context_v_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}attn.add_v_proj.lora_B.weight"
)
original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_A.weight"] = (
torch.cat([sample_q_A, sample_k_A, sample_v_A], dim=0)
)
original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_B.weight"] = (
torch.cat([sample_q_B, sample_k_B, sample_v_B], dim=0)
)
original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_A.weight"] = (
torch.cat([context_q_A, context_k_A, context_v_A], dim=0)
)
original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_B.weight"] = (
torch.cat([context_q_B, context_k_B, context_v_B], dim=0)
)
# qk_norm
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_q.weight",
f"double_blocks.{i}.img_attn.norm.query_norm.scale",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_k.weight",
f"double_blocks.{i}.img_attn.norm.key_norm.scale",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_added_q.weight",
f"double_blocks.{i}.txt_attn.norm.query_norm.scale",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.norm_added_k.weight",
f"double_blocks.{i}.txt_attn.norm.key_norm.scale",
)
# ff img_mlp
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff.net.0.proj.weight",
f"double_blocks.{i}.img_mlp.0.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff.net.2.weight",
f"double_blocks.{i}.img_mlp.2.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff_context.net.0.proj.weight",
f"double_blocks.{i}.txt_mlp.0.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}ff_context.net.2.weight",
f"double_blocks.{i}.txt_mlp.2.weight",
)
# output projections
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.to_out.0.weight",
f"double_blocks.{i}.img_attn.proj.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}attn.to_add_out.weight",
f"double_blocks.{i}.txt_attn.proj.weight",
)
# single transformer blocks
for i in range(num_single_layers):
block_prefix = f"single_transformer_blocks.{i}."
# norm.linear -> single_blocks.0.modulation.lin
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}norm.linear.weight",
f"single_blocks.{i}.modulation.lin.weight",
)
# Q, K, V, mlp
q_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_A.weight")
q_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_B.weight")
k_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_A.weight")
k_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_B.weight")
v_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_A.weight")
v_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_B.weight")
mlp_A = diffusers_state_dict.pop(
f"{prefix}{block_prefix}proj_mlp.lora_A.weight"
)
mlp_B = diffusers_state_dict.pop(
f"{prefix}{block_prefix}proj_mlp.lora_B.weight"
)
original_state_dict[f"single_blocks.{i}.linear1.lora_A.weight"] = torch.cat(
[q_A, k_A, v_A, mlp_A], dim=0
)
original_state_dict[f"single_blocks.{i}.linear1.lora_B.weight"] = torch.cat(
[q_B, k_B, v_B, mlp_B], dim=0
)
# output projections
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}{block_prefix}proj_out.weight",
f"single_blocks.{i}.linear2.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}proj_out.weight",
"final_layer.linear.weight",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}proj_out.bias",
"final_layer.linear.bias",
)
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
original_state_dict,
diffusers_state_dict,
f"{prefix}norm_out.linear.weight",
"final_layer.adaLN_modulation.1.weight",
)
if len(list(diffusers_state_dict.keys())) > 0:
logger.warning("Unexpected keys:", diffusers_state_dict.keys())
return original_state_dict
def convert_from_original_flux_checkpoint(
original_state_dict,
):
sd = {
k.replace("lora_unet_", "")
.replace("double_blocks_", "double_blocks.")
.replace("single_blocks_", "single_blocks.")
.replace("_img_attn_", ".img_attn.")
.replace("_txt_attn_", ".txt_attn.")
.replace("_img_mod_", ".img_mod.")
.replace("_txt_mod_", ".txt_mod.")
.replace("_img_mlp_", ".img_mlp.")
.replace("_txt_mlp_", ".txt_mlp.")
.replace("_linear1", ".linear1")
.replace("_linear2", ".linear2")
.replace("_modulation_", ".modulation.")
.replace("lora_up", "lora_B")
.replace("lora_down", "lora_A"): v
for k, v in original_state_dict.items()
if "lora" in k
}
return sd
def get_module_for_key(
key: str, model: Flux
) -> F8Linear | torch.nn.Linear | CublasLinear:
parts = key.split(".")
module = model
for part in parts:
module = getattr(module, part)
return module
def get_lora_for_key(key: str, lora_weights: dict):
prefix = key.split(".lora")[0]
lora_A = lora_weights[f"{prefix}.lora_A.weight"]
lora_B = lora_weights[f"{prefix}.lora_B.weight"]
alpha = lora_weights.get(f"{prefix}.alpha", None)
return lora_A, lora_B, alpha
@torch.inference_mode()
def apply_lora_weight_to_module(
module_weight: torch.Tensor,
lora_weights: dict,
rank: int = None,
lora_scale: float = 1.0,
):
lora_A, lora_B, alpha = lora_weights
uneven_rank = lora_B.shape[1] != lora_A.shape[0]
rank_diff = lora_A.shape[0] / lora_B.shape[1]
if rank is None:
rank = lora_B.shape[1]
else:
rank = rank
if alpha is None:
alpha = rank
else:
alpha = alpha
w_dtype = module_weight.dtype
dtype = torch.float32
device = module_weight.device
w_orig = module_weight.to(dtype=dtype, device=device)
w_up = lora_A.to(dtype=dtype, device=device)
w_down = lora_B.to(dtype=dtype, device=device)
# if not from_original_flux:
if alpha != rank:
w_up = w_up * alpha / rank
if uneven_rank:
fused_lora = lora_scale * torch.mm(
w_down.repeat_interleave(int(rank_diff), dim=1), w_up
)
else:
fused_lora = lora_scale * torch.mm(w_down, w_up)
fused_weight = w_orig + fused_lora
return fused_weight.to(dtype=w_dtype, device=device)
@torch.inference_mode()
def apply_lora_to_model(model: Flux, lora_path: str, lora_scale: float = 1.0) -> Flux:
has_guidance = model.params.guidance_embed
logger.info(f"Loading LoRA weights for {lora_path}")
lora_weights = load_file(lora_path)
from_original_flux = False
check_if_starts_with_transformer = [
k for k in lora_weights.keys() if k.startswith("transformer.")
]
if len(check_if_starts_with_transformer) > 0:
lora_weights = convert_diffusers_to_flux_transformer_checkpoint(
lora_weights, 19, 38, has_guidance=has_guidance, prefix="transformer."
)
else:
from_original_flux = True
lora_weights = convert_from_original_flux_checkpoint(lora_weights)
logger.info("LoRA weights loaded")
logger.debug("Extracting keys")
keys_without_ab = [
key.replace(".lora_A.weight", "")
.replace(".lora_B.weight", "")
.replace(".alpha", "")
for key in lora_weights.keys()
]
logger.debug("Keys extracted")
keys_without_ab = list(set(keys_without_ab))
for key in tqdm(keys_without_ab, desc="Applying LoRA", total=len(keys_without_ab)):
module = get_module_for_key(key, model)
dtype = model.dtype
weight_is_f8 = False
if isinstance(module, F8Linear):
weight_is_f8 = True
weight_f16 = (
module.float8_data.clone()
.detach()
.float()
.mul(module.scale_reciprocal)
.to(module.weight.device)
)
elif isinstance(module, torch.nn.Linear):
weight_f16 = module.weight.clone().detach().float()
elif isinstance(module, CublasLinear):
weight_f16 = module.weight.clone().detach().float()
lora_sd = get_lora_for_key(key, lora_weights)
weight_f16 = apply_lora_weight_to_module(
weight_f16, lora_sd, lora_scale=lora_scale
)
if weight_is_f8:
module.set_weight_tensor(weight_f16.type(dtype))
else:
module.weight.data = weight_f16.type(dtype)
logger.success("Lora applied")
return model
|