File size: 10,818 Bytes
e32884e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# flumina.py
import torch
import io
import json
from fireworks.flumina import FluminaModule, main as flumina_main
from fireworks.flumina.route import post
import pydantic
from pydantic import BaseModel
from fastapi import Header
from fastapi.responses import Response
import math
import os
import re
import PIL.Image as Image
from typing import Optional, Set, Tuple

from flux_pipeline import FluxPipeline
from util import load_config, ModelVersion

# Util
def _aspect_ratio_to_width_height(aspect_ratio: str) -> Tuple[int, int]:
    """
    Convert specified aspect ratio to a height/width pair.
    """
    if ":" not in aspect_ratio:
        raise ValueError(
            f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
        )

    w, h = aspect_ratio.split(":")
    try:
        w, h = int(w), int(h)
    except ValueError:
        raise ValueError(
            f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
        )

    valid_aspect_ratios = [
        (1, 1),
        (21, 9),
        (16, 9),
        (3, 2),
        (5, 4),
        (4, 5),
        (2, 3),
        (9, 16),
        (9, 21),
    ]
    if (w, h) not in valid_aspect_ratios:
        raise ValueError(
            f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be one of {valid_aspect_ratios}"
        )

    # We consider megapixel not 10^6 pixels but 2^20 (1024x1024) pixels
    TARGET_SIZE_MP = 1
    target_size = TARGET_SIZE_MP * 2**20

    width = math.sqrt(target_size / (w * h)) * w
    height = math.sqrt(target_size / (w * h)) * h

    PAD_MULTIPLE = 64

    if PAD_MULTIPLE:
        width = width // PAD_MULTIPLE * PAD_MULTIPLE
        height = height // PAD_MULTIPLE * PAD_MULTIPLE

    return int(width), int(height)


def encode_image(
    image: Image.Image, mime_type: str, jpeg_quality: int = 95
) -> bytes:
    buffered = io.BytesIO()
    if mime_type == "image/jpeg":
        if jpeg_quality < 0 or jpeg_quality > 100:
            raise ValueError(
                f"jpeg_quality must be between 0 and 100, not {jpeg_quality}"
            )
        image.save(buffered, format="JPEG", quality=jpeg_quality)
    elif mime_type == "image/png":
        image.save(buffered, format="PNG")
    else:
        raise ValueError(f"invalid mime_type {mime_type}")
    return buffered.getvalue()


def parse_accept_header(accept: str) -> str:
    # Split the string into the comma-separated components
    parts = accept.split(",")
    weighted_types = []

    for part in parts:
        # Use a regular expression to extract the media type and the optional q-factor
        match = re.match(
            r"(?P<media_type>[^;]+)(;q=(?P<q_factor>\d+(\.\d+)?))?", part.strip()
        )
        if match:
            media_type = match.group("media_type")
            q_factor = (
                float(match.group("q_factor")) if match.group("q_factor") else 1.0
            )
            weighted_types.append((media_type, q_factor))
        else:
            raise ValueError(f"Malformed Accept header value: {part.strip()}")

    # Sort the media types by q-factor, descending
    sorted_types = sorted(weighted_types, key=lambda x: x[1], reverse=True)

    for media_type, _ in sorted_types:
        if media_type in {"image/jpeg", "image/png"}:
            return media_type

    raise ValueError(f"Accept header did not include ones of supported MIME types: image/jpeg, image/png")


# Define request and response schemata
class Text2ImageRequest(BaseModel):
    prompt: str
    aspect_ratio: str = "16:9"
    guidance_scale: float = 3.5
    num_inference_steps: int = 30
    seed: int = 0


class Error(BaseModel):
    object: str = "error"
    type: str = "invalid_request_error"
    message: str


class ErrorResponse(BaseModel):
    error: Error = pydantic.Field(default_factory=Error)


class BillingInfo(BaseModel):
    steps: int
    height: int
    width: int
    is_control_net: bool = False


class FluminaModule(FluminaModule):
    def __init__(self):
        super().__init__()

        # Read configuration from config.json
        with open('config.json', 'r') as f:
            config_data = json.load(f)

        # Now, we need to construct the config and load the model
        if 'config_path' in config_data:
            self.pipeline = FluxPipeline.load_pipeline_from_config_path(
                config_data['config_path'],
                flow_model_path=config_data.get('flow_model_path', None)
            )
        else:
            model_version = (
                ModelVersion.flux_dev
                if config_data.get('model_version', 'flux-dev') == "flux-dev"
                else ModelVersion.flux_schnell
            )
            config = load_config(
                model_version,
                flux_path=config_data.get('flow_model_path', None),
                flux_device=config_data.get('flux_device', 'cuda:0'),
                ae_path=config_data.get('autoencoder_path', None),
                ae_device=config_data.get('autoencoder_device', 'cuda:0'),
                text_enc_path=config_data.get('text_enc_path', None),
                text_enc_device=config_data.get('text_enc_device', 'cuda:0'),
                flow_dtype="float16",
                text_enc_dtype="bfloat16",
                ae_dtype="bfloat16",
                num_to_quant=config_data.get('num_to_quant', 20),
                compile_extras=config_data.get('compile', False),
                compile_blocks=config_data.get('compile', False),
                quant_text_enc=(
                    None
                    if config_data.get('quant_text_enc', 'qfloat8') == "bf16"
                    else config_data.get('quant_text_enc', 'qfloat8')
                ),
                quant_ae=config_data.get('quant_ae', False),
                offload_flow=config_data.get('offload_flow', False),
                offload_ae=config_data.get('offload_ae', True),
                offload_text_enc=config_data.get('offload_text_enc', True),
                prequantized_flow=config_data.get('prequantized_flow', False),
                quantize_modulation=config_data.get('quantize_modulation', True),
                quantize_flow_embedder_layers=config_data.get(
                    'quantize_flow_embedder_layers', False
                ),
            )
            self.pipeline = FluxPipeline.load_pipeline_from_config(config)

        # Initialize LoRA adapters
        self.lora_adapters: Set[str] = set()
        self.active_lora_adapter: Optional[str] = None
        self._test_return_sync_response = False

    def _error_response(self, code: int, message: str) -> Response:
        response_json = ErrorResponse(
            error=Error(message=message),
        ).json()
        if self._test_return_sync_response:
            return response_json
        else:
            return Response(
                response_json,
                status_code=code,
                media_type="application/json",
            )

    def _image_response(
        self, image_bytes: bytes, mime_type: str, billing_info: BillingInfo
    ):
        if self._test_return_sync_response:
            return image_bytes
        else:
            headers = {'Fireworks-Billing-Properties': billing_info.json()}
            return Response(
                image_bytes, status_code=200, media_type=mime_type, headers=headers
            )

    @post('/text_to_image')
    async def text_to_image(
        self,
        body: Text2ImageRequest,
        accept: str = Header("image/jpeg"),
    ):
        mime_type = parse_accept_header(accept)
        width, height = _aspect_ratio_to_width_height(body.aspect_ratio)
        img_bio = self.pipeline.generate(
            prompt=body.prompt,
            height=height,
            width=width,
            guidance=body.guidance_scale,
            num_steps=body.num_inference_steps,
            seed=body.seed,
        )

        billing_info = BillingInfo(
            steps=body.num_inference_steps,
            height=height,
            width=width,
        )
        return self._image_response(img_bio.getvalue(), mime_type, billing_info)

    @property
    def supported_addon_types(self):
        return ['lora']

    # Addon interface methods adjusted to remove ControlNet support
    def load_addon(
        self,
        addon_account_id: str,
        addon_model_id: str,
        addon_type: str,
        addon_data_path: os.PathLike,
    ):
        if addon_type not in self.supported_addon_types:
            raise ValueError(
                f"Invalid addon type {addon_type}. Supported types: {self.supported_addon_types}"
            )

        qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"

        if addon_type == 'lora':
            self.pipeline.load_lora_weights(addon_data_path, adapter_name=qualname)
            self.lora_adapters.add(qualname)
        else:
            raise NotImplementedError(
                f'Addon support for type {addon_type} not implemented'
            )

    def unload_addon(
        self, addon_account_id: str, addon_model_id: str, addon_type: str
    ):
        qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"

        if addon_type == 'lora':
            assert qualname in self.lora_adapters
            self.pipeline.delete_adapters([qualname])
            self.lora_adapters.remove(qualname)
        else:
            raise NotImplementedError(
                f'Addon support for type {addon_type} not implemented'
            )

    def activate_addon(self, addon_account_id: str, addon_model_id: str):
        qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"

        if qualname in self.lora_adapters:
            if self.active_lora_adapter is not None:
                raise ValueError(
                    f"LoRA adapter {self.active_lora_adapter} already active. Multi-LoRA not yet supported"
                )

            self.active_lora_adapter = qualname
            return

        raise ValueError(f"Unknown addon {qualname}")

    def deactivate_addon(self, addon_account_id: str, addon_model_id: str):
        qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"

        if self.active_lora_adapter == qualname:
            self.active_lora_adapter = None
        else:
            raise AssertionError(f'Addon {qualname} not loaded!')


if __name__ == "__flumina_main__":
    f = FluminaModule()
    flumina_main(f)

if __name__ == "__main__":
    f = FluminaModule()
    f._test_return_sync_response = True
    import asyncio
    out = asyncio.run(f.text_to_image(
        body=Text2ImageRequest(
            prompt="test"
        ),
        accept="image/png"
    ))
    with open("out_image.png", "wb") as f:
        f.write(out)