File size: 10,818 Bytes
e32884e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# flumina.py
import torch
import io
import json
from fireworks.flumina import FluminaModule, main as flumina_main
from fireworks.flumina.route import post
import pydantic
from pydantic import BaseModel
from fastapi import Header
from fastapi.responses import Response
import math
import os
import re
import PIL.Image as Image
from typing import Optional, Set, Tuple
from flux_pipeline import FluxPipeline
from util import load_config, ModelVersion
# Util
def _aspect_ratio_to_width_height(aspect_ratio: str) -> Tuple[int, int]:
"""
Convert specified aspect ratio to a height/width pair.
"""
if ":" not in aspect_ratio:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
)
w, h = aspect_ratio.split(":")
try:
w, h = int(w), int(h)
except ValueError:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
)
valid_aspect_ratios = [
(1, 1),
(21, 9),
(16, 9),
(3, 2),
(5, 4),
(4, 5),
(2, 3),
(9, 16),
(9, 21),
]
if (w, h) not in valid_aspect_ratios:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be one of {valid_aspect_ratios}"
)
# We consider megapixel not 10^6 pixels but 2^20 (1024x1024) pixels
TARGET_SIZE_MP = 1
target_size = TARGET_SIZE_MP * 2**20
width = math.sqrt(target_size / (w * h)) * w
height = math.sqrt(target_size / (w * h)) * h
PAD_MULTIPLE = 64
if PAD_MULTIPLE:
width = width // PAD_MULTIPLE * PAD_MULTIPLE
height = height // PAD_MULTIPLE * PAD_MULTIPLE
return int(width), int(height)
def encode_image(
image: Image.Image, mime_type: str, jpeg_quality: int = 95
) -> bytes:
buffered = io.BytesIO()
if mime_type == "image/jpeg":
if jpeg_quality < 0 or jpeg_quality > 100:
raise ValueError(
f"jpeg_quality must be between 0 and 100, not {jpeg_quality}"
)
image.save(buffered, format="JPEG", quality=jpeg_quality)
elif mime_type == "image/png":
image.save(buffered, format="PNG")
else:
raise ValueError(f"invalid mime_type {mime_type}")
return buffered.getvalue()
def parse_accept_header(accept: str) -> str:
# Split the string into the comma-separated components
parts = accept.split(",")
weighted_types = []
for part in parts:
# Use a regular expression to extract the media type and the optional q-factor
match = re.match(
r"(?P<media_type>[^;]+)(;q=(?P<q_factor>\d+(\.\d+)?))?", part.strip()
)
if match:
media_type = match.group("media_type")
q_factor = (
float(match.group("q_factor")) if match.group("q_factor") else 1.0
)
weighted_types.append((media_type, q_factor))
else:
raise ValueError(f"Malformed Accept header value: {part.strip()}")
# Sort the media types by q-factor, descending
sorted_types = sorted(weighted_types, key=lambda x: x[1], reverse=True)
for media_type, _ in sorted_types:
if media_type in {"image/jpeg", "image/png"}:
return media_type
raise ValueError(f"Accept header did not include ones of supported MIME types: image/jpeg, image/png")
# Define request and response schemata
class Text2ImageRequest(BaseModel):
prompt: str
aspect_ratio: str = "16:9"
guidance_scale: float = 3.5
num_inference_steps: int = 30
seed: int = 0
class Error(BaseModel):
object: str = "error"
type: str = "invalid_request_error"
message: str
class ErrorResponse(BaseModel):
error: Error = pydantic.Field(default_factory=Error)
class BillingInfo(BaseModel):
steps: int
height: int
width: int
is_control_net: bool = False
class FluminaModule(FluminaModule):
def __init__(self):
super().__init__()
# Read configuration from config.json
with open('config.json', 'r') as f:
config_data = json.load(f)
# Now, we need to construct the config and load the model
if 'config_path' in config_data:
self.pipeline = FluxPipeline.load_pipeline_from_config_path(
config_data['config_path'],
flow_model_path=config_data.get('flow_model_path', None)
)
else:
model_version = (
ModelVersion.flux_dev
if config_data.get('model_version', 'flux-dev') == "flux-dev"
else ModelVersion.flux_schnell
)
config = load_config(
model_version,
flux_path=config_data.get('flow_model_path', None),
flux_device=config_data.get('flux_device', 'cuda:0'),
ae_path=config_data.get('autoencoder_path', None),
ae_device=config_data.get('autoencoder_device', 'cuda:0'),
text_enc_path=config_data.get('text_enc_path', None),
text_enc_device=config_data.get('text_enc_device', 'cuda:0'),
flow_dtype="float16",
text_enc_dtype="bfloat16",
ae_dtype="bfloat16",
num_to_quant=config_data.get('num_to_quant', 20),
compile_extras=config_data.get('compile', False),
compile_blocks=config_data.get('compile', False),
quant_text_enc=(
None
if config_data.get('quant_text_enc', 'qfloat8') == "bf16"
else config_data.get('quant_text_enc', 'qfloat8')
),
quant_ae=config_data.get('quant_ae', False),
offload_flow=config_data.get('offload_flow', False),
offload_ae=config_data.get('offload_ae', True),
offload_text_enc=config_data.get('offload_text_enc', True),
prequantized_flow=config_data.get('prequantized_flow', False),
quantize_modulation=config_data.get('quantize_modulation', True),
quantize_flow_embedder_layers=config_data.get(
'quantize_flow_embedder_layers', False
),
)
self.pipeline = FluxPipeline.load_pipeline_from_config(config)
# Initialize LoRA adapters
self.lora_adapters: Set[str] = set()
self.active_lora_adapter: Optional[str] = None
self._test_return_sync_response = False
def _error_response(self, code: int, message: str) -> Response:
response_json = ErrorResponse(
error=Error(message=message),
).json()
if self._test_return_sync_response:
return response_json
else:
return Response(
response_json,
status_code=code,
media_type="application/json",
)
def _image_response(
self, image_bytes: bytes, mime_type: str, billing_info: BillingInfo
):
if self._test_return_sync_response:
return image_bytes
else:
headers = {'Fireworks-Billing-Properties': billing_info.json()}
return Response(
image_bytes, status_code=200, media_type=mime_type, headers=headers
)
@post('/text_to_image')
async def text_to_image(
self,
body: Text2ImageRequest,
accept: str = Header("image/jpeg"),
):
mime_type = parse_accept_header(accept)
width, height = _aspect_ratio_to_width_height(body.aspect_ratio)
img_bio = self.pipeline.generate(
prompt=body.prompt,
height=height,
width=width,
guidance=body.guidance_scale,
num_steps=body.num_inference_steps,
seed=body.seed,
)
billing_info = BillingInfo(
steps=body.num_inference_steps,
height=height,
width=width,
)
return self._image_response(img_bio.getvalue(), mime_type, billing_info)
@property
def supported_addon_types(self):
return ['lora']
# Addon interface methods adjusted to remove ControlNet support
def load_addon(
self,
addon_account_id: str,
addon_model_id: str,
addon_type: str,
addon_data_path: os.PathLike,
):
if addon_type not in self.supported_addon_types:
raise ValueError(
f"Invalid addon type {addon_type}. Supported types: {self.supported_addon_types}"
)
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if addon_type == 'lora':
self.pipeline.load_lora_weights(addon_data_path, adapter_name=qualname)
self.lora_adapters.add(qualname)
else:
raise NotImplementedError(
f'Addon support for type {addon_type} not implemented'
)
def unload_addon(
self, addon_account_id: str, addon_model_id: str, addon_type: str
):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if addon_type == 'lora':
assert qualname in self.lora_adapters
self.pipeline.delete_adapters([qualname])
self.lora_adapters.remove(qualname)
else:
raise NotImplementedError(
f'Addon support for type {addon_type} not implemented'
)
def activate_addon(self, addon_account_id: str, addon_model_id: str):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if qualname in self.lora_adapters:
if self.active_lora_adapter is not None:
raise ValueError(
f"LoRA adapter {self.active_lora_adapter} already active. Multi-LoRA not yet supported"
)
self.active_lora_adapter = qualname
return
raise ValueError(f"Unknown addon {qualname}")
def deactivate_addon(self, addon_account_id: str, addon_model_id: str):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if self.active_lora_adapter == qualname:
self.active_lora_adapter = None
else:
raise AssertionError(f'Addon {qualname} not loaded!')
if __name__ == "__flumina_main__":
f = FluminaModule()
flumina_main(f)
if __name__ == "__main__":
f = FluminaModule()
f._test_return_sync_response = True
import asyncio
out = asyncio.run(f.text_to_image(
body=Text2ImageRequest(
prompt="test"
),
accept="image/png"
))
with open("out_image.png", "wb") as f:
f.write(out)
|