File size: 10,679 Bytes
d9aea20 9dc5b0b d9aea20 37bd8c1 9b84867 37bd8c1 9b84867 37bd8c1 d9aea20 c4a514f f708e90 c4a514f 264acad d9aea20 264acad d9aea20 0f3134f d9aea20 c2ecfb5 c4a514f 28dec30 2f2c44c d9aea20 37bd8c1 1f9e684 37bd8c1 d9aea20 fb7df61 d9aea20 c2ecfb5 9dc5b0b 604f17d 9dc5b0b d9aea20 e81fa57 d9aea20 c2ecfb5 9dc5b0b 604f17d d9aea20 1f9e684 d9aea20 2f2c44c d9aea20 1f9e684 d9aea20 a035930 d9aea20 264acad d9aea20 c4a514f 264acad c4a514f d9aea20 c4a514f d9aea20 c4a514f d9aea20 e81fa57 c4a514f 289aa1f d9aea20 1f9e684 d9aea20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import json
from pathlib import Path
from typing import Literal, Optional
import torch
from modules.autoencoder import AutoEncoder, AutoEncoderParams
from modules.conditioner import HFEmbedder
from modules.flux_model import Flux, FluxParams
from safetensors.torch import load_file as load_sft
try:
from enum import StrEnum
except:
from enum import Enum
class StrEnum(str, Enum):
pass
from pydantic import BaseModel, ConfigDict
from loguru import logger
class ModelVersion(StrEnum):
flux_dev = "flux-dev"
flux_schnell = "flux-schnell"
class QuantizationDtype(StrEnum):
qfloat8 = "qfloat8"
qint2 = "qint2"
qint4 = "qint4"
qint8 = "qint8"
bfloat16 = "bfloat16"
float16 = "float16"
class ModelSpec(BaseModel):
version: ModelVersion
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
# Add option to pass in custom clip model
clip_path: str | None = "openai/clip-vit-large-patch14"
ae_path: str | None
repo_id: str | None
repo_flow: str | None
repo_ae: str | None
text_enc_max_length: int = 512
text_enc_path: str | None
text_enc_device: str | torch.device | None = "cuda:0"
ae_device: str | torch.device | None = "cuda:0"
flux_device: str | torch.device | None = "cuda:0"
flow_dtype: str = "float16"
ae_dtype: str = "bfloat16"
text_enc_dtype: str = "bfloat16"
# unused / deprecated
num_to_quant: Optional[int] = 20
quantize_extras: bool = False
compile_extras: bool = False
compile_blocks: bool = False
flow_quantization_dtype: Optional[QuantizationDtype] = QuantizationDtype.qfloat8
text_enc_quantization_dtype: Optional[QuantizationDtype] = QuantizationDtype.qfloat8
ae_quantization_dtype: Optional[QuantizationDtype] = None
clip_quantization_dtype: Optional[QuantizationDtype] = None
offload_text_encoder: bool = False
offload_vae: bool = False
offload_flow: bool = False
prequantized_flow: bool = False
# Improved precision via not quanitzing the modulation linear layers
quantize_modulation: bool = True
# Improved precision via not quanitzing the flow embedder layers
quantize_flow_embedder_layers: bool = False
model_config: ConfigDict = {
"arbitrary_types_allowed": True,
"use_enum_values": True,
}
def load_models(config: ModelSpec) -> tuple[Flux, AutoEncoder, HFEmbedder, HFEmbedder]:
flow = load_flow_model(config)
ae = load_autoencoder(config)
clip, t5 = load_text_encoders(config)
return flow, ae, clip, t5
def parse_device(device: str | torch.device | None) -> torch.device:
if isinstance(device, str):
return torch.device(device)
elif isinstance(device, torch.device):
return device
else:
return torch.device("cuda:0")
def into_dtype(dtype: str) -> torch.dtype:
if isinstance(dtype, torch.dtype):
return dtype
if dtype == "float16":
return torch.float16
elif dtype == "bfloat16":
return torch.bfloat16
elif dtype == "float32":
return torch.float32
else:
raise ValueError(f"Invalid dtype: {dtype}")
def into_device(device: str | torch.device | None) -> torch.device:
if isinstance(device, str):
return torch.device(device)
elif isinstance(device, torch.device):
return device
elif isinstance(device, int):
return torch.device(f"cuda:{device}")
else:
return torch.device("cuda:0")
def load_config(
name: ModelVersion = ModelVersion.flux_dev,
flux_path: str | None = None,
ae_path: str | None = None,
text_enc_path: str | None = None,
text_enc_device: str | torch.device | None = None,
ae_device: str | torch.device | None = None,
flux_device: str | torch.device | None = None,
flow_dtype: str = "float16",
ae_dtype: str = "bfloat16",
text_enc_dtype: str = "bfloat16",
num_to_quant: Optional[int] = 20,
compile_extras: bool = False,
compile_blocks: bool = False,
offload_text_enc: bool = False,
offload_ae: bool = False,
offload_flow: bool = False,
quant_text_enc: Optional[Literal["float8", "qint2", "qint4", "qint8"]] = None,
quant_ae: bool = False,
prequantized_flow: bool = False,
quantize_modulation: bool = True,
quantize_flow_embedder_layers: bool = False,
) -> ModelSpec:
"""
Load a model configuration using the passed arguments.
"""
text_enc_device = str(parse_device(text_enc_device))
ae_device = str(parse_device(ae_device))
flux_device = str(parse_device(flux_device))
return ModelSpec(
version=name,
repo_id=(
"black-forest-labs/FLUX.1-dev"
if name == ModelVersion.flux_dev
else "black-forest-labs/FLUX.1-schnell"
),
repo_flow=(
"flux1-dev.sft" if name == ModelVersion.flux_dev else "flux1-schnell.sft"
),
repo_ae="ae.sft",
ckpt_path=flux_path,
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=name == ModelVersion.flux_dev,
),
ae_path=ae_path,
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
text_enc_path=text_enc_path,
text_enc_device=text_enc_device,
ae_device=ae_device,
flux_device=flux_device,
flow_dtype=flow_dtype,
ae_dtype=ae_dtype,
text_enc_dtype=text_enc_dtype,
text_enc_max_length=512 if name == ModelVersion.flux_dev else 256,
num_to_quant=num_to_quant,
compile_extras=compile_extras,
compile_blocks=compile_blocks,
offload_flow=offload_flow,
offload_text_encoder=offload_text_enc,
offload_vae=offload_ae,
text_enc_quantization_dtype={
"float8": QuantizationDtype.qfloat8,
"qint2": QuantizationDtype.qint2,
"qint4": QuantizationDtype.qint4,
"qint8": QuantizationDtype.qint8,
}.get(quant_text_enc, None),
ae_quantization_dtype=QuantizationDtype.qfloat8 if quant_ae else None,
prequantized_flow=prequantized_flow,
quantize_modulation=quantize_modulation,
quantize_flow_embedder_layers=quantize_flow_embedder_layers,
)
def load_config_from_path(path: str) -> ModelSpec:
path_path = Path(path)
if not path_path.exists():
raise ValueError(f"Path {path} does not exist")
if not path_path.is_file():
raise ValueError(f"Path {path} is not a file")
return ModelSpec(**json.loads(path_path.read_text()))
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
logger.warning("\n" + "-" * 79 + "\n")
logger.warning(
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
)
elif len(missing) > 0:
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
logger.warning(
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
)
def load_flow_model(config: ModelSpec) -> Flux:
ckpt_path = config.ckpt_path
FluxClass = Flux
with torch.device("meta"):
model = FluxClass(config, dtype=into_dtype(config.flow_dtype))
if not config.prequantized_flow:
model.type(into_dtype(config.flow_dtype))
if ckpt_path is not None:
# load_sft doesn't support torch.device
sd = load_sft(ckpt_path, device="cpu")
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
if not config.prequantized_flow:
model.type(into_dtype(config.flow_dtype))
return model
def load_text_encoders(config: ModelSpec) -> tuple[HFEmbedder, HFEmbedder]:
clip = HFEmbedder(
config.clip_path,
max_length=77,
torch_dtype=into_dtype(config.text_enc_dtype),
device=into_device(config.text_enc_device).index or 0,
is_clip=True,
quantization_dtype=config.clip_quantization_dtype,
)
t5 = HFEmbedder(
config.text_enc_path,
max_length=config.text_enc_max_length,
torch_dtype=into_dtype(config.text_enc_dtype),
device=into_device(config.text_enc_device).index or 0,
quantization_dtype=config.text_enc_quantization_dtype,
)
return clip, t5
def load_autoencoder(config: ModelSpec) -> AutoEncoder:
ckpt_path = config.ae_path
with torch.device("meta" if ckpt_path is not None else config.ae_device):
ae = AutoEncoder(config.ae_params).to(into_dtype(config.ae_dtype))
if ckpt_path is not None:
sd = load_sft(ckpt_path, device=str(config.ae_device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
ae.to(device=into_device(config.ae_device), dtype=into_dtype(config.ae_dtype))
if config.ae_quantization_dtype is not None:
from float8_quantize import recursive_swap_linears
recursive_swap_linears(ae)
if config.offload_vae:
ae.to("cpu")
torch.cuda.empty_cache()
return ae
class LoadedModels(BaseModel):
flow: Flux
ae: AutoEncoder
clip: HFEmbedder
t5: HFEmbedder
config: ModelSpec
model_config = {
"arbitrary_types_allowed": True,
"use_enum_values": True,
}
def load_models_from_config_path(
path: str,
) -> LoadedModels:
config = load_config_from_path(path)
clip, t5 = load_text_encoders(config)
return LoadedModels(
flow=load_flow_model(config),
ae=load_autoencoder(config),
clip=clip,
t5=t5,
config=config,
)
def load_models_from_config(config: ModelSpec) -> LoadedModels:
clip, t5 = load_text_encoders(config)
return LoadedModels(
flow=load_flow_model(config),
ae=load_autoencoder(config),
clip=clip,
t5=t5,
config=config,
)
|