FLUX.1-schnell-fp8-flumina / image_encoder.py
aredden's picture
Adding device specific configs & more input image type options + small model spec from args change
e81fa57
raw
history blame
1.07 kB
import io
from PIL import Image
import numpy as np
import torch
class ImageEncoder:
@torch.inference_mode()
def encode_torch(self, img: torch.Tensor, quality=95):
if img.ndim == 2:
img = (
img[None]
.repeat_interleave(3, dim=0)
.permute(1, 2, 0)
.contiguous()
.clamp(0, 255)
.type(torch.uint8)
)
elif img.ndim == 3:
if img.shape[0] == 3:
img = img.permute(1, 2, 0).contiguous().clamp(0, 255).type(torch.uint8)
elif img.shape[2] == 3:
img = img.contiguous().clamp(0, 255).type(torch.uint8)
else:
raise ValueError(f"Unsupported image shape: {img.shape}")
else:
raise ValueError(f"Unsupported image num dims: {img.ndim}")
img = img.cpu().numpy().astype(np.uint8)
im = Image.fromarray(img)
iob = io.BytesIO()
im.save(iob, format="JPEG", quality=quality)
iob.seek(0)
return iob