|
import torch |
|
from einops import rearrange |
|
from torch import Tensor, nn |
|
from pydantic import BaseModel |
|
|
|
|
|
class AutoEncoderParams(BaseModel): |
|
resolution: int |
|
in_channels: int |
|
ch: int |
|
out_ch: int |
|
ch_mult: list[int] |
|
num_res_blocks: int |
|
z_channels: int |
|
scale_factor: float |
|
shift_factor: float |
|
|
|
|
|
def swish(x: Tensor) -> Tensor: |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
|
|
def attention(self, h_: Tensor) -> Tensor: |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
b, c, h, w = q.shape |
|
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous() |
|
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous() |
|
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous() |
|
h_ = nn.functional.scaled_dot_product_attention(q, k, v) |
|
|
|
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return x + self.proj_out(self.attention(x)) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, in_channels: int, out_channels: int): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
|
|
self.norm1 = nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
self.conv1 = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.norm2 = nn.GroupNorm( |
|
num_groups=32, num_channels=out_channels, eps=1e-6, affine=True |
|
) |
|
self.conv2 = nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
self.nin_shortcut = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h = x |
|
h = self.norm1(h) |
|
h = swish(h) |
|
h = self.conv1(h) |
|
|
|
h = self.norm2(h) |
|
h = swish(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
|
|
self.conv = nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
|
|
def forward(self, x: Tensor): |
|
pad = (0, 1, 0, 1) |
|
x = nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x: Tensor): |
|
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
in_channels: int, |
|
ch: int, |
|
ch_mult: list[int], |
|
num_res_blocks: int, |
|
z_channels: int, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
block_in = self.ch |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) |
|
block_in = block_out |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
|
|
|
|
self.norm_out = nn.GroupNorm( |
|
num_groups=32, num_channels=block_in, eps=1e-6, affine=True |
|
) |
|
self.conv_out = nn.Conv2d( |
|
block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1]) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
h = self.norm_out(h) |
|
h = swish(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
ch: int, |
|
out_ch: int, |
|
ch_mult: list[int], |
|
num_res_blocks: int, |
|
in_channels: int, |
|
resolution: int, |
|
z_channels: int, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.ffactor = 2 ** (self.num_resolutions - 1) |
|
|
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
|
|
|
|
self.conv_in = nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks + 1): |
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) |
|
block_in = block_out |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = nn.GroupNorm( |
|
num_groups=32, num_channels=block_in, eps=1e-6, affine=True |
|
) |
|
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, z: Tensor) -> Tensor: |
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = swish(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class DiagonalGaussian(nn.Module): |
|
def __init__(self, sample: bool = True, chunk_dim: int = 1): |
|
super().__init__() |
|
self.sample = sample |
|
self.chunk_dim = chunk_dim |
|
|
|
def forward(self, z: Tensor) -> Tensor: |
|
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim) |
|
if self.sample: |
|
std = torch.exp(0.5 * logvar) |
|
return mean + std * torch.randn_like(mean) |
|
else: |
|
return mean |
|
|
|
|
|
class AutoEncoder(nn.Module): |
|
def __init__(self, params: AutoEncoderParams): |
|
super().__init__() |
|
self.encoder = Encoder( |
|
resolution=params.resolution, |
|
in_channels=params.in_channels, |
|
ch=params.ch, |
|
ch_mult=params.ch_mult, |
|
num_res_blocks=params.num_res_blocks, |
|
z_channels=params.z_channels, |
|
) |
|
self.decoder = Decoder( |
|
resolution=params.resolution, |
|
in_channels=params.in_channels, |
|
ch=params.ch, |
|
out_ch=params.out_ch, |
|
ch_mult=params.ch_mult, |
|
num_res_blocks=params.num_res_blocks, |
|
z_channels=params.z_channels, |
|
) |
|
self.reg = DiagonalGaussian() |
|
|
|
self.scale_factor = params.scale_factor |
|
self.shift_factor = params.shift_factor |
|
|
|
def encode(self, x: Tensor) -> Tensor: |
|
z = self.reg(self.encoder(x)) |
|
z = self.scale_factor * (z - self.shift_factor) |
|
return z |
|
|
|
def decode(self, z: Tensor) -> Tensor: |
|
z = z / self.scale_factor + self.shift_factor |
|
return self.decoder(z) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.decode(self.encode(x)) |
|
|