aredden's picture
Fix non-prequantized inference
a035930
raw
history blame
16.6 kB
from collections import namedtuple
import os
import torch
DISABLE_COMPILE = os.getenv("DISABLE_COMPILE", "0") == "1"
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.benchmark_limit = 20
torch.set_float32_matmul_precision("high")
import math
from torch import Tensor, nn
from pydantic import BaseModel
from torch.nn import functional as F
from float8_quantize import F8Linear
try:
from cublas_ops import CublasLinear
except ImportError:
CublasLinear = nn.Linear
class FluxParams(BaseModel):
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
# attention is always same shape each time it's called per H*W, so compile with fullgraph
# @torch.compile(mode="reduce-overhead", fullgraph=True, disable=DISABLE_COMPILE)
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = F.scaled_dot_product_attention(q, k, v).transpose(1, 2)
x = x.reshape(*x.shape[:-2], -1)
return x
# @torch.compile(mode="reduce-overhead", disable=DISABLE_COMPILE)
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack(
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1
)
out = out.reshape(*out.shape[:-1], 2, 2)
return out
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape), xk_out.reshape(*xk.shape)
class EmbedND(nn.Module):
def __init__(
self,
dim: int,
theta: int,
axes_dim: list[int],
dtype: torch.dtype = torch.bfloat16,
):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
self.dtype = dtype
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[
rope(ids[..., i], self.axes_dim[i], self.theta).type(self.dtype)
for i in range(n_axes)
],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
/ half
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = F8Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = F8Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
return F.rms_norm(x, self.scale.shape, self.scale, eps=1e-6)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q, k
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = F8Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = F8Linear(dim, dim)
self.K = 3
self.H = self.num_heads
self.KH = self.K * self.H
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]:
B, L, D = x.shape
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
return q, k, v
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = self.rearrange_for_norm(qkv)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
ModulationOut = namedtuple("ModulationOut", ["shift", "scale", "gate"])
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = F8Linear(dim, self.multiplier * dim, bias=True)
self.act = nn.SiLU()
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(self.act(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float,
qkv_bias: bool = False,
dtype: torch.dtype = torch.float16,
):
super().__init__()
self.dtype = dtype
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
F8Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
F8Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
F8Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
F8Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.K = 3
self.H = self.num_heads
self.KH = self.K * self.H
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]:
B, L, D = x.shape
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
return q, k, v
def forward(
self,
img: Tensor,
txt: Tensor,
vec: Tensor,
pe: Tensor,
) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = self.rearrange_for_norm(img_qkv)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = self.rearrange_for_norm(txt_qkv)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp(
(1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift
).clamp(min=-384 * 2, max=384 * 2)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp(
(1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift
).clamp(min=-384 * 2, max=384 * 2)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
dtype: torch.dtype = torch.float16,
):
super().__init__()
self.dtype = dtype
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = F8Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = F8Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
self.K = 3
self.H = self.num_heads
self.KH = self.K * self.H
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod = self.modulation(vec)[0]
pre_norm = self.pre_norm(x)
x_mod = (1 + mod.scale) * pre_norm + mod.shift
qkv, mlp = torch.split(
self.linear1(x_mod),
[3 * self.hidden_size, self.mlp_hidden_dim],
dim=-1,
)
B, L, D = qkv.shape
q, k, v = qkv.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
attn = attention(q, k, v, pe=pe)
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)).clamp(
min=-384 * 4, max=384 * 4
)
return x + mod.gate * output
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = CublasLinear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), CublasLinear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams, dtype: torch.dtype = torch.float16):
super().__init__()
self.dtype = dtype
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
)
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(
dim=pe_dim,
theta=params.theta,
axes_dim=params.axes_dim,
dtype=self.dtype,
)
self.img_in = F8Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
if params.guidance_embed
else nn.Identity()
)
self.txt_in = F8Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=self.dtype,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
dtype=self.dtype,
)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).type(self.dtype))
if self.params.guidance_embed:
if guidance is None:
raise ValueError(
"Didn't get guidance strength for guidance distilled model."
)
vec = vec + self.guidance_in(
timestep_embedding(guidance, 256).type(self.dtype)
)
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
# double stream blocks
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
# single stream blocks
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
@classmethod
def from_pretrained(cls, path: str, dtype: torch.dtype = torch.bfloat16) -> "Flux":
from util import load_config_from_path
from safetensors.torch import load_file
config = load_config_from_path(path)
with torch.device("meta"):
klass = cls(params=config.params, dtype=dtype).type(dtype)
ckpt = load_file(config.ckpt_path, device="cpu")
klass.load_state_dict(ckpt, assign=True)
return klass.to("cpu")