|
import math |
|
from typing import Callable |
|
|
|
import torch |
|
from einops import rearrange, repeat |
|
from torch import Tensor |
|
|
|
from modules.flux_model import Flux |
|
from modules.conditioner import HFEmbedder |
|
|
|
|
|
@torch.inference_mode() |
|
def get_noise( |
|
num_samples: int, |
|
height: int, |
|
width: int, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
seed: int, |
|
): |
|
return torch.randn( |
|
num_samples, |
|
16, |
|
|
|
2 * math.ceil(height / 16), |
|
2 * math.ceil(width / 16), |
|
device=device, |
|
dtype=dtype, |
|
generator=torch.Generator(device=device).manual_seed(seed), |
|
) |
|
|
|
|
|
@torch.inference_mode() |
|
def prepare( |
|
t5: HFEmbedder, |
|
clip: HFEmbedder, |
|
img: Tensor, |
|
prompt: str | list[str], |
|
target_device: torch.device = torch.device("cuda:0"), |
|
target_dtype: torch.dtype = torch.float16, |
|
) -> dict[str, Tensor]: |
|
bs, c, h, w = img.shape |
|
if bs == 1 and not isinstance(prompt, str): |
|
bs = len(prompt) |
|
|
|
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) |
|
if img.shape[0] == 1 and bs > 1: |
|
img = repeat(img, "1 ... -> bs ...", bs=bs) |
|
|
|
img_ids = torch.zeros(h // 2, w // 2, 3, device=target_device, dtype=target_dtype) |
|
img_ids[..., 1] = ( |
|
img_ids[..., 1] |
|
+ torch.arange(h // 2, device=target_device, dtype=target_dtype)[:, None] |
|
) |
|
img_ids[..., 2] = ( |
|
img_ids[..., 2] |
|
+ torch.arange(w // 2, device=target_device, dtype=target_dtype)[None, :] |
|
) |
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) |
|
|
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
txt = t5(prompt).to(target_device, dtype=target_dtype) |
|
if txt.shape[0] == 1 and bs > 1: |
|
txt = repeat(txt, "1 ... -> bs ...", bs=bs) |
|
txt_ids = torch.zeros(bs, txt.shape[1], 3, device=target_device, dtype=target_dtype) |
|
|
|
vec = clip(prompt).to(target_device, dtype=target_dtype) |
|
if vec.shape[0] == 1 and bs > 1: |
|
vec = repeat(vec, "1 ... -> bs ...", bs=bs) |
|
|
|
return { |
|
"img": img, |
|
"img_ids": img_ids, |
|
"txt": txt, |
|
"txt_ids": txt_ids, |
|
"vec": vec, |
|
} |
|
|
|
|
|
def time_shift(mu: float, sigma: float, t: Tensor): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) |
|
|
|
|
|
def get_lin_function( |
|
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 |
|
) -> Callable[[float], float]: |
|
m = (y2 - y1) / (x2 - x1) |
|
b = y1 - m * x1 |
|
return lambda x: m * x + b |
|
|
|
|
|
def get_schedule( |
|
num_steps: int, |
|
image_seq_len: int, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.15, |
|
shift: bool = True, |
|
) -> list[float]: |
|
|
|
timesteps = torch.linspace(1, 0, num_steps + 1) |
|
|
|
|
|
if shift: |
|
|
|
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) |
|
timesteps = time_shift(mu, 1.0, timesteps) |
|
|
|
return timesteps.tolist() |
|
|
|
|
|
@torch.inference_mode() |
|
def denoise( |
|
model: Flux, |
|
|
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
vec: Tensor, |
|
|
|
timesteps: list[float], |
|
guidance: float = 4.0, |
|
dtype: torch.dtype = torch.bfloat16, |
|
device: torch.device = torch.device("cuda:0"), |
|
): |
|
from tqdm import tqdm |
|
|
|
|
|
guidance_vec = torch.full((img.shape[0],), guidance, device=device, dtype=dtype) |
|
for t_curr, t_prev in tqdm( |
|
zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1 |
|
): |
|
t_vec = torch.full((img.shape[0],), t_curr, dtype=dtype, device=device) |
|
pred = model( |
|
img=img, |
|
img_ids=img_ids, |
|
txt=txt, |
|
txt_ids=txt_ids, |
|
y=vec, |
|
timesteps=t_vec, |
|
guidance=guidance_vec, |
|
) |
|
|
|
img = img + (t_prev - t_curr) * pred |
|
|
|
return img |
|
|
|
|
|
def unpack(x: Tensor, height: int, width: int) -> Tensor: |
|
return rearrange( |
|
x, |
|
"b (h w) (c ph pw) -> b c (h ph) (w pw)", |
|
h=math.ceil(height / 16), |
|
w=math.ceil(width / 16), |
|
ph=2, |
|
pw=2, |
|
) |
|
|