aredden's picture
Add quantize embedders/modulation to argparse options
604f17d
raw
history blame
6.29 kB
import argparse
import uvicorn
from api import app
def parse_args():
parser = argparse.ArgumentParser(description="Launch Flux API server")
parser.add_argument(
"-c",
"--config-path",
type=str,
help="Path to the configuration file, if not provided, the model will be loaded from the command line arguments",
)
parser.add_argument(
"-p",
"--port",
type=int,
default=8088,
help="Port to run the server on",
)
parser.add_argument(
"-H",
"--host",
type=str,
default="0.0.0.0",
help="Host to run the server on",
)
parser.add_argument(
"-f", "--flow-model-path", type=str, help="Path to the flow model"
)
parser.add_argument(
"-t", "--text-enc-path", type=str, help="Path to the text encoder"
)
parser.add_argument(
"-a", "--autoencoder-path", type=str, help="Path to the autoencoder"
)
parser.add_argument(
"-m",
"--model-version",
type=str,
choices=["flux-dev", "flux-schnell"],
default="flux-dev",
help="Choose model version",
)
parser.add_argument(
"-F",
"--flux-device",
type=str,
default="cuda:0",
help="Device to run the flow model on",
)
parser.add_argument(
"-T",
"--text-enc-device",
type=str,
default="cuda:0",
help="Device to run the text encoder on",
)
parser.add_argument(
"-A",
"--autoencoder-device",
type=str,
default="cuda:0",
help="Device to run the autoencoder on",
)
parser.add_argument(
"-q",
"--num-to-quant",
type=int,
default=20,
help="Number of linear layers in flow transformer (the 'unet') to quantize",
)
parser.add_argument(
"-C",
"--compile",
action="store_true",
default=False,
help="Compile the flow model with extra optimizations",
)
parser.add_argument(
"-qT",
"--quant-text-enc",
type=str,
default="qfloat8",
choices=["qint4", "qfloat8", "qint2", "qint8", "bf16"],
help="Quantize the t5 text encoder to the given dtype, if bf16, will not quantize",
dest="quant_text_enc",
)
parser.add_argument(
"-qA",
"--quant-ae",
action="store_true",
default=False,
help="Quantize the autoencoder with float8 linear layers, otherwise will use bfloat16",
dest="quant_ae",
)
parser.add_argument(
"-OF",
"--offload-flow",
action="store_true",
default=False,
dest="offload_flow",
help="Offload the flow model to the CPU when not being used to save memory",
)
parser.add_argument(
"-OA",
"--no-offload-ae",
action="store_false",
default=True,
dest="offload_ae",
help="Disable offloading the autoencoder to the CPU when not being used to increase e2e inference speed",
)
parser.add_argument(
"-OT",
"--no-offload-text-enc",
action="store_false",
default=True,
dest="offload_text_enc",
help="Disable offloading the text encoder to the CPU when not being used to increase e2e inference speed",
)
parser.add_argument(
"-PF",
"--prequantized-flow",
action="store_true",
default=False,
dest="prequantized_flow",
help="Load the flow model from a prequantized checkpoint "
+ "(requires loading the flow model, running a minimum of 24 steps, "
+ "and then saving the state_dict as a safetensors file), "
+ "which reduces the size of the checkpoint by about 50% & reduces startup time",
)
parser.add_argument(
"-nqfm",
"--no-quantize-flow-modulation",
action="store_false",
default=True,
dest="quantize_modulation",
help="Disable quantization of the modulation layers in the flow model, adds ~2GB vram usage for moderate precision improvements",
)
parser.add_argument(
"-qfl",
"--quantize-flow-embedder-layers",
action="store_true",
default=False,
dest="quantize_flow_embedder_layers",
help="Quantize the flow embedder layers in the flow model, saves ~512MB vram usage, but precision loss is very noticeable",
)
return parser.parse_args()
def main():
args = parse_args()
# lazy loading so cli returns fast instead of waiting for torch to load modules
from flux_pipeline import FluxPipeline
from util import load_config, ModelVersion
if args.config_path:
app.state.model = FluxPipeline.load_pipeline_from_config_path(
args.config_path, flow_model_path=args.flow_model_path
)
else:
model_version = (
ModelVersion.flux_dev
if args.model_version == "flux-dev"
else ModelVersion.flux_schnell
)
config = load_config(
model_version,
flux_path=args.flow_model_path,
flux_device=args.flux_device,
ae_path=args.autoencoder_path,
ae_device=args.autoencoder_device,
text_enc_path=args.text_enc_path,
text_enc_device=args.text_enc_device,
flow_dtype="float16",
text_enc_dtype="bfloat16",
ae_dtype="bfloat16",
num_to_quant=args.num_to_quant,
compile_extras=args.compile,
compile_blocks=args.compile,
quant_text_enc=(
None if args.quant_text_enc == "bf16" else args.quant_text_enc
),
quant_ae=args.quant_ae,
offload_flow=args.offload_flow,
offload_ae=args.offload_ae,
offload_text_enc=args.offload_text_enc,
prequantized_flow=args.prequantized_flow,
quantize_modulation=args.quantize_modulation,
quantize_flow_embedder_layers=args.quantize_flow_embedder_layers,
)
app.state.model = FluxPipeline.load_pipeline_from_config(config)
uvicorn.run(app, host=args.host, port=args.port)
if __name__ == "__main__":
main()