aredden commited on
Commit
4a2503e
·
unverified ·
1 Parent(s): 42be379

Update README.md - Fix config path names

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -73,11 +73,11 @@ If you get errors installing `torch-cublas-hgemm`, feel free to comment it out i
73
 
74
  ## Usage
75
 
76
- For a single ADA GPU with less than 24GB vram, and more than 16GB vram, you should use the `configs/config-dev-1-4080.json` config file as a base, and then tweak the parameters to fit your needs. It offloads all models to CPU when not in use, compiles the flow model with extra optimizations, and quantizes the text encoder to nf4 and the autoencoder to qfloat8.
77
 
78
  For a single ADA GPU with more than ~32GB vram, you should use the `configs/config-dev-1-RTX6000ADA.json` config file as a base, and then tweak the parameters to fit your needs. It does not offload any models to CPU, compiles the flow model with extra optimizations, and quantizes the text encoder to qfloat8 and the autoencoder to stays as bfloat16.
79
 
80
- For a single 4090 GPU, you should use the `configs/config-dev-1-4090.json` config file as a base, and then tweak the parameters to fit your needs. It offloads the text encoder and the autoencoder to CPU, compiles the flow model with extra optimizations, and quantizes the text encoder to nf4 and the autoencoder to float8.
81
 
82
  **NOTE:** For all of these configs, you must change the `ckpt_path`, `ae_path`, and `text_enc_path` parameters to the path to your own checkpoint, autoencoder, and text encoder.
83
 
@@ -135,7 +135,7 @@ python main.py --port 8088 --host 0.0.0.0 \
135
 
136
  The configuration files are located in the `configs` directory. You can specify different configurations for different model versions and devices.
137
 
138
- Example configuration file for a single 4090 (`configs/config-dev-1-4090.json`):
139
 
140
  ```js
141
  {
@@ -256,7 +256,7 @@ Other things to change can be the
256
  ### Running the Server
257
 
258
  ```bash
259
- python main.py --config-path configs/config-dev.json --port 8088 --host 0.0.0.0
260
  ```
261
 
262
  OR, if you need more granular control over the server, you can run the server with something like this:
@@ -322,7 +322,7 @@ from flux_pipeline import FluxPipeline
322
 
323
 
324
  pipe = FluxPipeline.load_pipeline_from_config_path(
325
- "configs/config-dev-1-4090.json" # or whatever your config is
326
  )
327
 
328
  output_jpeg_bytes: io.BytesIO = pipe.generate(
 
73
 
74
  ## Usage
75
 
76
+ For a single ADA GPU with less than 24GB vram, and more than 16GB vram, you should use the `configs/config-dev-offload-1-4080.json` config file as a base, and then tweak the parameters to fit your needs. It offloads all models to CPU when not in use, compiles the flow model with extra optimizations, and quantizes the text encoder to nf4 and the autoencoder to qfloat8.
77
 
78
  For a single ADA GPU with more than ~32GB vram, you should use the `configs/config-dev-1-RTX6000ADA.json` config file as a base, and then tweak the parameters to fit your needs. It does not offload any models to CPU, compiles the flow model with extra optimizations, and quantizes the text encoder to qfloat8 and the autoencoder to stays as bfloat16.
79
 
80
+ For a single 4090 GPU, you should use the `configs/config-dev-offload-1-4090.json` config file as a base, and then tweak the parameters to fit your needs. It offloads the text encoder and the autoencoder to CPU, compiles the flow model with extra optimizations, and quantizes the text encoder to nf4 and the autoencoder to float8.
81
 
82
  **NOTE:** For all of these configs, you must change the `ckpt_path`, `ae_path`, and `text_enc_path` parameters to the path to your own checkpoint, autoencoder, and text encoder.
83
 
 
135
 
136
  The configuration files are located in the `configs` directory. You can specify different configurations for different model versions and devices.
137
 
138
+ Example configuration file for a single 4090 (`configs/config-dev-offload-1-4090.json`):
139
 
140
  ```js
141
  {
 
256
  ### Running the Server
257
 
258
  ```bash
259
+ python main.py --config-path configs/config-dev-offload-1-4090.json --port 8088 --host 0.0.0.0
260
  ```
261
 
262
  OR, if you need more granular control over the server, you can run the server with something like this:
 
322
 
323
 
324
  pipe = FluxPipeline.load_pipeline_from_config_path(
325
+ "configs/config-dev-offload-1-4090.json" # or whatever your config is
326
  )
327
 
328
  output_jpeg_bytes: io.BytesIO = pipe.generate(