firqaaa commited on
Commit
b1ff00a
·
verified ·
1 Parent(s): d8a494f

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: aku hanya menyukai setiap menit film ini.
12
+ - text: bioskop orang dalam kondisi terbaiknya.
13
+ - text: bukan untuk orang yang mudah tersinggung atau mudah tersinggung, ini adalah
14
+ pemeriksaan yang berani dan berkepanjangan terhadap budaya yang diidolakan, kebencian
15
+ terhadap diri sendiri, dan politik seksual.
16
+ - text: itu curang.
17
+ - text: Meskipun penduduk setempat akan senang melihat situs-situs Cleveland, seluruh
18
+ dunia akan menikmati komedi bertempo cepat dengan keunikan yang mungkin membuat
19
+ iri para coen bersaudara yang telah memenangkan penghargaan.
20
+ pipeline_tag: text-classification
21
+ inference: true
22
+ base_model: firqaaa/indo-sentence-bert-base
23
+ model-index:
24
+ - name: SetFit with firqaaa/indo-sentence-bert-base
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.3425339366515837
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with firqaaa/indo-sentence-bert-base
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
53
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 5 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:---------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | sangat positif | <ul><li>"tema universal untuk menjadi orang yang lebih baik melalui cinta belum pernah difilmkan dengan cara yang lebih menarik daripada di `baran. '"</li><li>'hangat dalam penggambaran manusia sehari-hari yang penuh kasih namun tidak konsisten, santai dalam langkah tenang yang sempurna, dan bangga dalam pesannya.'</li><li>'kecerdasan yang mendalam serta kasih sayang yang hangat dan menyelimuti terhembus dari setiap bingkainya.'</li></ul> |
70
+ | sangat negatif | <ul><li>'sebuah film kejam yang dibuat oleh seseorang yang pasti membaca catcher in the rye tetapi jelas-jelas menderita disleksia'</li><li>"all the queen's men adalah film perang kemunduran yang gagal dalam berbagai tingkatan, sehingga harus membayar ganti rugi kepada pemirsa."</li><li>'... ini bahkan bukan film yang bisa kita nikmati sebagai pelarian ringan; ini adalah ketakutan dan frustrasi yang dipicu hingga tingkat yang tidak dapat ditoleransi.'</li></ul> |
71
+ | positif | <ul><li>'direktur kredit ramsay karena mengambil cerita yang terkadang mustahil dan membuatnya terasa realistis.'</li><li>'patut diberi hormat hanya karena mencoba menjadi lebih kompleks daripada film rata-rata Anda.'</li><li>'tapi secara keseluruhan, Anda akan menyukai film ini.'</li></ul> |
72
+ | negatif | <ul><li>'semua orang harus disalahkan di sini.'</li><li>'tontonan hingar bingar -lrb- di acara TV -rrb- biasanya telah diragi oleh pesona yang secara mencolok hilang dari ledakan layar lebar gadis-gadis itu.'</li><li>'alur cerita, karakter, drama, emosi, ide – semuanya tidak relevan dengan pengalaman melihat raja kalajengking.'</li></ul> |
73
+ | netral | <ul><li>'affleck hanya menciptakan garis besar untuk sebuah peran yang masih perlu ia kembangkan, sebuah peran yang dengan mudah dipenuhi dengan otoritas.'</li><li>'sutradara oliver parker bekerja keras untuk mengubah kehidupan menjadi pentingnya bersikap sungguh-sungguh sehingga dia mungkin menarik satu atau dua otot.'</li><li>'clayburgh dan tambor adalah pemain yang menawan; tak satu pun dari mereka pantas menerima Eric Schaeffer.'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 0.3425 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("firqaaa/indo-setfit-bert-base-p2")
99
+ # Run inference
100
+ preds = model("itu curang.")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:-------|:----|
132
+ | Word count | 2 | 15.476 | 46 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:---------------|:----------------------|
136
+ | sangat negatif | 200 |
137
+ | negatif | 200 |
138
+ | netral | 200 |
139
+ | positif | 200 |
140
+ | sangat positif | 200 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (128, 32)
144
+ - num_epochs: (1, 8)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - body_learning_rate: (2e-05, 5e-06)
148
+ - head_learning_rate: 2e-05
149
+ - loss: CosineSimilarityLoss
150
+ - distance_metric: cosine_distance
151
+ - margin: 0.25
152
+ - end_to_end: False
153
+ - use_amp: False
154
+ - warmup_proportion: 0.1
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: True
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:--------:|:-------------:|:---------------:|
162
+ | 0.0002 | 1 | 0.3317 | - |
163
+ | 0.008 | 50 | 0.2883 | - |
164
+ | 0.016 | 100 | 0.2625 | - |
165
+ | 0.024 | 150 | 0.2516 | - |
166
+ | 0.032 | 200 | 0.2075 | - |
167
+ | 0.04 | 250 | 0.184 | - |
168
+ | 0.048 | 300 | 0.1632 | - |
169
+ | 0.056 | 350 | 0.1105 | - |
170
+ | 0.064 | 400 | 0.1109 | - |
171
+ | 0.072 | 450 | 0.0934 | - |
172
+ | 0.08 | 500 | 0.0518 | - |
173
+ | 0.088 | 550 | 0.0246 | - |
174
+ | 0.096 | 600 | 0.0133 | - |
175
+ | 0.104 | 650 | 0.0056 | - |
176
+ | 0.112 | 700 | 0.006 | - |
177
+ | 0.12 | 750 | 0.0072 | - |
178
+ | 0.128 | 800 | 0.0179 | - |
179
+ | 0.136 | 850 | 0.0025 | - |
180
+ | 0.144 | 900 | 0.0019 | - |
181
+ | 0.152 | 950 | 0.0008 | - |
182
+ | 0.16 | 1000 | 0.0009 | - |
183
+ | 0.168 | 1050 | 0.0016 | - |
184
+ | 0.176 | 1100 | 0.0008 | - |
185
+ | 0.184 | 1150 | 0.0009 | - |
186
+ | 0.192 | 1200 | 0.0006 | - |
187
+ | 0.2 | 1250 | 0.0112 | - |
188
+ | 0.208 | 1300 | 0.0007 | - |
189
+ | 0.216 | 1350 | 0.0005 | - |
190
+ | 0.224 | 1400 | 0.0006 | - |
191
+ | 0.232 | 1450 | 0.0004 | - |
192
+ | 0.24 | 1500 | 0.0003 | - |
193
+ | 0.248 | 1550 | 0.0111 | - |
194
+ | 0.256 | 1600 | 0.0007 | - |
195
+ | 0.264 | 1650 | 0.0004 | - |
196
+ | 0.272 | 1700 | 0.0068 | - |
197
+ | 0.28 | 1750 | 0.0006 | - |
198
+ | 0.288 | 1800 | 0.008 | - |
199
+ | 0.296 | 1850 | 0.0004 | - |
200
+ | 0.304 | 1900 | 0.0009 | - |
201
+ | 0.312 | 1950 | 0.0004 | - |
202
+ | 0.32 | 2000 | 0.0003 | - |
203
+ | 0.328 | 2050 | 0.0034 | - |
204
+ | 0.336 | 2100 | 0.0003 | - |
205
+ | 0.344 | 2150 | 0.0002 | - |
206
+ | 0.352 | 2200 | 0.0002 | - |
207
+ | 0.36 | 2250 | 0.0002 | - |
208
+ | 0.368 | 2300 | 0.0002 | - |
209
+ | 0.376 | 2350 | 0.0002 | - |
210
+ | 0.384 | 2400 | 0.0002 | - |
211
+ | 0.392 | 2450 | 0.0001 | - |
212
+ | 0.4 | 2500 | 0.0002 | - |
213
+ | 0.408 | 2550 | 0.0001 | - |
214
+ | 0.416 | 2600 | 0.0001 | - |
215
+ | 0.424 | 2650 | 0.0002 | - |
216
+ | 0.432 | 2700 | 0.0001 | - |
217
+ | 0.44 | 2750 | 0.0001 | - |
218
+ | 0.448 | 2800 | 0.0001 | - |
219
+ | 0.456 | 2850 | 0.0003 | - |
220
+ | 0.464 | 2900 | 0.0001 | - |
221
+ | 0.472 | 2950 | 0.0001 | - |
222
+ | 0.48 | 3000 | 0.0004 | - |
223
+ | 0.488 | 3050 | 0.0002 | - |
224
+ | 0.496 | 3100 | 0.0001 | - |
225
+ | 0.504 | 3150 | 0.0003 | - |
226
+ | 0.512 | 3200 | 0.0001 | - |
227
+ | 0.52 | 3250 | 0.0001 | - |
228
+ | 0.528 | 3300 | 0.0002 | - |
229
+ | 0.536 | 3350 | 0.0001 | - |
230
+ | 0.544 | 3400 | 0.0001 | - |
231
+ | 0.552 | 3450 | 0.0001 | - |
232
+ | 0.56 | 3500 | 0.0001 | - |
233
+ | 0.568 | 3550 | 0.0001 | - |
234
+ | 0.576 | 3600 | 0.0001 | - |
235
+ | 0.584 | 3650 | 0.0001 | - |
236
+ | 0.592 | 3700 | 0.0001 | - |
237
+ | 0.6 | 3750 | 0.0 | - |
238
+ | 0.608 | 3800 | 0.0001 | - |
239
+ | 0.616 | 3850 | 0.0001 | - |
240
+ | 0.624 | 3900 | 0.0001 | - |
241
+ | 0.632 | 3950 | 0.0001 | - |
242
+ | 0.64 | 4000 | 0.0003 | - |
243
+ | 0.648 | 4050 | 0.0001 | - |
244
+ | 0.656 | 4100 | 0.0001 | - |
245
+ | 0.664 | 4150 | 0.0001 | - |
246
+ | 0.672 | 4200 | 0.0001 | - |
247
+ | 0.68 | 4250 | 0.0001 | - |
248
+ | 0.688 | 4300 | 0.0001 | - |
249
+ | 0.696 | 4350 | 0.0001 | - |
250
+ | 0.704 | 4400 | 0.0001 | - |
251
+ | 0.712 | 4450 | 0.0001 | - |
252
+ | 0.72 | 4500 | 0.0001 | - |
253
+ | 0.728 | 4550 | 0.0001 | - |
254
+ | 0.736 | 4600 | 0.0001 | - |
255
+ | 0.744 | 4650 | 0.0001 | - |
256
+ | 0.752 | 4700 | 0.0001 | - |
257
+ | 0.76 | 4750 | 0.0001 | - |
258
+ | 0.768 | 4800 | 0.0001 | - |
259
+ | 0.776 | 4850 | 0.0001 | - |
260
+ | 0.784 | 4900 | 0.0001 | - |
261
+ | 0.792 | 4950 | 0.0001 | - |
262
+ | 0.8 | 5000 | 0.0 | - |
263
+ | 0.808 | 5050 | 0.0001 | - |
264
+ | 0.816 | 5100 | 0.0001 | - |
265
+ | 0.824 | 5150 | 0.0001 | - |
266
+ | 0.832 | 5200 | 0.0 | - |
267
+ | 0.84 | 5250 | 0.0001 | - |
268
+ | 0.848 | 5300 | 0.0001 | - |
269
+ | 0.856 | 5350 | 0.0 | - |
270
+ | 0.864 | 5400 | 0.0001 | - |
271
+ | 0.872 | 5450 | 0.0001 | - |
272
+ | 0.88 | 5500 | 0.0001 | - |
273
+ | 0.888 | 5550 | 0.0001 | - |
274
+ | 0.896 | 5600 | 0.0 | - |
275
+ | 0.904 | 5650 | 0.0001 | - |
276
+ | 0.912 | 5700 | 0.0001 | - |
277
+ | 0.92 | 5750 | 0.0001 | - |
278
+ | 0.928 | 5800 | 0.0 | - |
279
+ | 0.936 | 5850 | 0.0 | - |
280
+ | 0.944 | 5900 | 0.0 | - |
281
+ | 0.952 | 5950 | 0.0 | - |
282
+ | 0.96 | 6000 | 0.0 | - |
283
+ | 0.968 | 6050 | 0.0 | - |
284
+ | 0.976 | 6100 | 0.0001 | - |
285
+ | 0.984 | 6150 | 0.0 | - |
286
+ | 0.992 | 6200 | 0.0 | - |
287
+ | **1.0** | **6250** | **0.0** | **0.3546** |
288
+
289
+ * The bold row denotes the saved checkpoint.
290
+ ### Framework Versions
291
+ - Python: 3.10.13
292
+ - SetFit: 1.0.3
293
+ - Sentence Transformers: 2.2.2
294
+ - Transformers: 4.36.2
295
+ - PyTorch: 2.1.2+cu121
296
+ - Datasets: 2.16.1
297
+ - Tokenizers: 0.15.0
298
+
299
+ ## Citation
300
+
301
+ ### BibTeX
302
+ ```bibtex
303
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
304
+ doi = {10.48550/ARXIV.2209.11055},
305
+ url = {https://arxiv.org/abs/2209.11055},
306
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
307
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
308
+ title = {Efficient Few-Shot Learning Without Prompts},
309
+ publisher = {arXiv},
310
+ year = {2022},
311
+ copyright = {Creative Commons Attribution 4.0 International}
312
+ }
313
+ ```
314
+
315
+ <!--
316
+ ## Glossary
317
+
318
+ *Clearly define terms in order to be accessible across audiences.*
319
+ -->
320
+
321
+ <!--
322
+ ## Model Card Authors
323
+
324
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
325
+ -->
326
+
327
+ <!--
328
+ ## Model Card Contact
329
+
330
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
331
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_6250/",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.36.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.20.1",
5
+ "pytorch": "1.11.0"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "sangat negatif",
4
+ "negatif",
5
+ "netral",
6
+ "positif",
7
+ "sangat positif"
8
+ ],
9
+ "normalize_embeddings": false
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d2a8f42ec04b816aaf02e1a21e70d2eb0b68871bdceaa58c7c07a9c72d1ead1
3
+ size 497787752
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c4cc1a3430422fff821dbd9e1f63b23e94091b0d597bc104c7a48fa18920aba
3
+ size 16912
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff