File size: 1,568 Bytes
5b4c209
a4ef907
 
 
 
 
 
 
 
 
5b4c209
a4ef907
 
5b4c209
 
a4ef907
921daf1
a4ef907
 
 
 
5b4c209
 
 
 
a4ef907
 
5b4c209
 
 
a4ef907
5b4c209
a4ef907
 
5b4c209
a4ef907
 
5b4c209
a4ef907
5b4c209
a4ef907
 
5b4c209
a4ef907
 
5b4c209
a4ef907
 
 
 
5b4c209
921daf1
a4ef907
5b4c209
a4ef907
5b4c209
a4ef907
5b4c209
a4ef907
5b4c209
 
a4ef907
5b4c209
a4ef907
 
5b4c209
a4ef907
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
 
---
tags:
- ultralyticsplus
- yolov8
- ultralytics
- yolo
- vision
- object-detection
- pytorch

library_name: ultralytics
library_version: 8.0.43
inference: false

model-index:
- name: foduucom/table-detection-and-extraction
  results:
  - task:
      type: object-detection

    metrics:
      - type: precision  # since [email protected] is not available on hf.co/metrics
        value: 0.96196  # min: 0.0 - max: 1.0
        name: [email protected](box)
---

<div align="center">
  <img width="640" alt="foduucom/table-detection-and-extraction" src="https://huggingface.co/foduucom/table-detection-and-extraction/resolve/main/thumbnail.jpg">
</div>

### Supported Labels

```
['bordered', 'borderless']
```

### How to use

- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):

```bash
pip install ultralyticsplus==0.0.28 ultralytics==8.0.43
```

- Load model and perform prediction:

```python
from ultralyticsplus import YOLO, render_result

# load model
model = YOLO('foduucom/table-detection-and-extraction')

# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model.predict(image)

# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()
```