File size: 4,242 Bytes
aa97a27
 
 
 
6525f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa97a27
 
fb42eb6
aa97a27
df20836
 
6fa3f66
6525f8b
 
 
 
 
 
 
 
 
 
aa97a27
 
 
 
f264b55
22b9902
 
 
 
 
 
 
 
 
 
 
f264b55
254361b
2132b62
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language:
- en
license: mit
library_name: transformers
model-index:
- name: free-evo-qwen72b-v0.8-re
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 79.86
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=freewheelin/free-evo-qwen72b-v0.8-re
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 91.34
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=freewheelin/free-evo-qwen72b-v0.8-re
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.00
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=freewheelin/free-evo-qwen72b-v0.8-re
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 74.85
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=freewheelin/free-evo-qwen72b-v0.8-re
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 87.77
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=freewheelin/free-evo-qwen72b-v0.8-re
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.89
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=freewheelin/free-evo-qwen72b-v0.8-re
      name: Open LLM Leaderboard
---

# Model Card for free-evo-qwen72b-v0.8

## Developed by : [Freewheelin](https://freewheelin-recruit.oopy.io/) AI Technical Team

## 2024 4th May - avg. 81.28 [Open Llm Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)   

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |81.28|
|ARC (25-Shot)                    |79.86|
|HellaSwag (10-Shot)              |91.32|
|MMLU (5-Shot)                    |78.00|
|TruthfulQA (0-shot)              |74.85|
|Winogrande (5-shot)              |87.77|
|GSM8k (5-shot)                   |75.89|

## Method
- We were inspired by this [Sakana project](https://sakana.ai/evolutionary-model-merge/)

## Process
You need two models with the same architecture.
- Choose one model and fine-tune it to create a gap between the original model and the fine-tuned one. It doesn't matter whether the evaluation score is higher or lower.
- Merge the two models.
- Evaluate the merged model.
- Fine-tune a specific evaluation part of the model if you need to increase the score for that part. (It's unlikely to work as you think, but you can try it.)
- Merge the models again.
- Evaluate again.
- Keep going until the average evaluation score is higher than the original one.   

That's it. Simple.
You can create a framework to automate this process.

## Base Architecture 
- QWEN2

## Base Models
- several QWEN2 based models