File size: 4,484 Bytes
3da4c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Dinotron
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Dinotron

This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0265
- Accuracy: 0.9932

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 7    | 0.1146          | 0.9638   |
| 0.3773        | 2.0   | 14   | 0.0336          | 0.9932   |
| 0.0541        | 3.0   | 21   | 0.0402          | 0.9887   |
| 0.0541        | 4.0   | 28   | 0.0463          | 0.9887   |
| 0.0476        | 5.0   | 35   | 0.0594          | 0.9819   |
| 0.1408        | 6.0   | 42   | 0.1296          | 0.9570   |
| 0.1408        | 7.0   | 49   | 0.0872          | 0.9729   |
| 0.0898        | 8.0   | 56   | 0.2245          | 0.9344   |
| 0.216         | 9.0   | 63   | 0.1444          | 0.9570   |
| 0.076         | 10.0  | 70   | 0.0316          | 0.9887   |
| 0.076         | 11.0  | 77   | 0.0411          | 0.9864   |
| 0.0369        | 12.0  | 84   | 0.0275          | 0.9887   |
| 0.0505        | 13.0  | 91   | 0.1610          | 0.9638   |
| 0.0505        | 14.0  | 98   | 0.0513          | 0.9910   |
| 0.0274        | 15.0  | 105  | 0.2366          | 0.9615   |
| 0.0735        | 16.0  | 112  | 0.0738          | 0.9796   |
| 0.0735        | 17.0  | 119  | 0.0529          | 0.9819   |
| 0.0334        | 18.0  | 126  | 0.1024          | 0.9661   |
| 0.0347        | 19.0  | 133  | 0.0919          | 0.9819   |
| 0.0206        | 20.0  | 140  | 0.0851          | 0.9864   |
| 0.0206        | 21.0  | 147  | 0.1004          | 0.9796   |
| 0.0516        | 22.0  | 154  | 0.1706          | 0.9638   |
| 0.0418        | 23.0  | 161  | 0.0505          | 0.9910   |
| 0.0418        | 24.0  | 168  | 0.0939          | 0.9774   |
| 0.0173        | 25.0  | 175  | 0.0553          | 0.9842   |
| 0.0239        | 26.0  | 182  | 0.1255          | 0.9796   |
| 0.0239        | 27.0  | 189  | 0.2256          | 0.9661   |
| 0.0286        | 28.0  | 196  | 0.0943          | 0.9751   |
| 0.0502        | 29.0  | 203  | 0.0937          | 0.9751   |
| 0.0102        | 30.0  | 210  | 0.0910          | 0.9842   |
| 0.0102        | 31.0  | 217  | 0.0336          | 0.9887   |
| 0.0182        | 32.0  | 224  | 0.0870          | 0.9796   |
| 0.0126        | 33.0  | 231  | 0.0565          | 0.9842   |
| 0.0126        | 34.0  | 238  | 0.0541          | 0.9842   |
| 0.0157        | 35.0  | 245  | 0.0591          | 0.9932   |
| 0.0059        | 36.0  | 252  | 0.0985          | 0.9819   |
| 0.0059        | 37.0  | 259  | 0.0813          | 0.9819   |
| 0.0092        | 38.0  | 266  | 0.0239          | 0.9955   |
| 0.0225        | 39.0  | 273  | 0.0982          | 0.9706   |
| 0.0105        | 40.0  | 280  | 0.0113          | 0.9955   |
| 0.0105        | 41.0  | 287  | 0.0127          | 0.9977   |
| 0.007         | 42.0  | 294  | 0.0760          | 0.9887   |
| 0.0032        | 43.0  | 301  | 0.0196          | 0.9932   |
| 0.0032        | 44.0  | 308  | 0.0171          | 0.9932   |
| 0.0206        | 45.0  | 315  | 0.0501          | 0.9910   |
| 0.0001        | 46.0  | 322  | 0.0925          | 0.9842   |
| 0.0001        | 47.0  | 329  | 0.0318          | 0.9910   |
| 0.0017        | 48.0  | 336  | 0.0612          | 0.9864   |
| 0.0023        | 49.0  | 343  | 0.0685          | 0.9864   |
| 0.0013        | 50.0  | 350  | 0.0265          | 0.9932   |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3