Diffusers
ONNX
Safetensors
leeway.zlw commited on
Commit
508c460
1 Parent(s): 7910706

docs: update readme

Browse files
Files changed (1) hide show
  1. README.md +412 -0
README.md CHANGED
@@ -1,3 +1,415 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ <h1 align='center'>Hallo2: Long-Duration and High-Resolution Audio-driven Portrait Image Animation</h1>
5
+
6
+ <div align='center'>
7
+ <a href='https://github.com/cuijh26' target='_blank'>Jiahao Cui</a><sup>1*</sup>&emsp;
8
+ <a href='https://github.com/crystallee-ai' target='_blank'>Hui Li</a><sup>1*</sup>&emsp;
9
+ <a href='https://yoyo000.github.io/' target='_blank'>Yao Yao</a><sup>3</sup>&emsp;
10
+ <a href='http://zhuhao.cc/home/' target='_blank'>Hao Zhu</a><sup>3</sup>&emsp;
11
+ <a href='https://github.com/NinoNeumann' target='_blank'>Hanlin Shang</a><sup>1</sup>&emsp;
12
+ <a href='https://github.com/Kaihui-Cheng' target='_blank'>Kaihui Cheng</a><sup>1</sup>&emsp;
13
+ <a href='' target='_blank'>Hang Zhou</a><sup>2</sup>&emsp;
14
+ </div>
15
+ <div align='center'>
16
+ <a href='https://sites.google.com/site/zhusiyucs/home' target='_blank'>Siyu Zhu</a><sup>1✉️</sup>&emsp;
17
+ <a href='https://jingdongwang2017.github.io/' target='_blank'>Jingdong Wang</a><sup>2</sup>&emsp;
18
+ </div>
19
+
20
+ <div align='center'>
21
+ <sup>1</sup>Fudan University&emsp; <sup>2</sup>Baidu Inc&emsp; <sup>3</sup>Nanjing University
22
+ </div>
23
+
24
+ <br>
25
+ <div align='center'>
26
+ <a href='https://github.com/fudan-generative-vision/hallo2'><img src='https://img.shields.io/github/stars/fudan-generative-vision/hallo2?style=social'></a>
27
+ <a href='https://fudan-generative-vision.github.io/hallo2/#/'><img src='https://img.shields.io/badge/Project-HomePage-Green'></a>
28
+ <a href='https://arxiv.org/abs/2410.07718'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
29
+ <a href='https://huggingface.co/fudan-generative-ai/hallo2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
30
+ <a href='assets/wechat.jpeg'><img src='https://badges.aleen42.com/src/wechat.svg'></a>
31
+ </div>
32
+ <br>
33
+
34
+ ## 📸 Showcase
35
+
36
+ <table class="center">
37
+ <tr>
38
+ <td style="text-align: center"><b>Tailor Swift Speech @ NYU (4K, 23 minutes)</b></td>
39
+ <td style="text-align: center"><b>Johan Rockstrom Speech @ TED (4K, 18 minutes)</b></td>
40
+ </tr>
41
+ <tr>
42
+ <td style="text-align: center"><a target="_blank" href="https://cdn.aondata.work/hallo2/videos/showcases/TailorSpeech.mp4"><img src="https://cdn.aondata.work/hallo2/videos/showcases/gifs/TailorSpeechGIF.gif"></a></td>
43
+ <td style="text-align: center"><a target="_blank" href="https://cdn.aondata.work/hallo2/videos/showcases/TEDSpeech.mp4"><img src="https://cdn.aondata.work/hallo2/videos/showcases/gifs/TEDSpeechGIF.gif"></a></td>
44
+ </tr>
45
+ <tr>
46
+ <td style="text-align: center"><b>Churchill's Iron Curtain Speech (4K, 4 minutes)</b></td>
47
+ <td style="text-align: center"><b>An LLM Course from Stanford (4K, up to 1 hour)</b></td>
48
+ </tr>
49
+ <tr>
50
+ <td style="text-align: center"><a target="_blank" href="https://cdn.aondata.work/hallo2/videos/showcases/DarkestHour.mp4"><img src="https://cdn.aondata.work/hallo2/videos/showcases/gifs/DarkestHour.gif"></a></td>
51
+ <td style="text-align: center"><a target="_blank" href="https://cdn.aondata.work/hallo2/videos/showcases/LLMCourse.mp4"><img src="https://cdn.aondata.work/hallo2/videos/showcases/gifs/LLMCourseGIF.gif"></a></td>
52
+ </tr>
53
+ </table>
54
+
55
+ Visit our [project page](https://fudan-generative-vision.github.io/hallo2/#/) to view more cases.
56
+
57
+ ## 🔧️ Framework
58
+
59
+ ![framework](https://raw.githubusercontent.com/fudan-generative-vision/hallo2/refs/heads/main/assets/framework_2.jpg)
60
+
61
+ ## ⚙️ Installation
62
+
63
+ - System requirement: Ubuntu 20.04/Ubuntu 22.04, Cuda 11.8
64
+ - Tested GPUs: A100
65
+
66
+ Create conda environment:
67
+
68
+ ```bash
69
+ conda create -n hallo python=3.10
70
+ conda activate hallo
71
+ ```
72
+
73
+ Install packages with `pip`
74
+
75
+ ```bash
76
+ pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
77
+ pip install -r requirements.txt
78
+ ```
79
+
80
+ Besides, ffmpeg is also needed:
81
+
82
+ ```bash
83
+ apt-get install ffmpeg
84
+ ```
85
+
86
+ ### 📥 Download Pretrained Models
87
+
88
+ You can easily get all pretrained models required by inference from our [HuggingFace repo](https://huggingface.co/fudan-generative-ai/hallo2).
89
+
90
+ Clone the pretrained models into `${PROJECT_ROOT}/pretrained_models` directory by cmd below:
91
+
92
+ ```shell
93
+ git lfs install
94
+ git clone https://huggingface.co/fudan-generative-ai/hallo2 pretrained_models
95
+ ```
96
+
97
+ Or you can download them separately from their source repo:
98
+
99
+ - [hallo](https://huggingface.co/fudan-generative-ai/hallo2/tree/main/hallo2): Our checkpoints consist of denoising UNet, face locator, image & audio proj.
100
+ - [audio_separator](https://huggingface.co/huangjackson/Kim_Vocal_2): Kim*Vocal_2 MDX-Net vocal removal model. (\_Thanks to [KimberleyJensen](https://github.com/KimberleyJensen)*)
101
+ - [insightface](https://github.com/deepinsight/insightface/tree/master/python-package#model-zoo): 2D and 3D Face Analysis placed into `pretrained_models/face_analysis/models/`. (_Thanks to deepinsight_)
102
+ - [face landmarker](https://storage.googleapis.com/mediapipe-models/face_landmarker/face_landmarker/float16/1/face_landmarker.task): Face detection & mesh model from [mediapipe](https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker#models) placed into `pretrained_models/face_analysis/models`.
103
+ - [motion module](https://github.com/guoyww/AnimateDiff/blob/main/README.md#202309-animatediff-v2): motion module from [AnimateDiff](https://github.com/guoyww/AnimateDiff). (_Thanks to [guoyww](https://github.com/guoyww)_).
104
+ - [sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse): Weights are intended to be used with the diffusers library. (_Thanks to [stablilityai](https://huggingface.co/stabilityai)_)
105
+ - [StableDiffusion V1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5): Initialized and fine-tuned from Stable-Diffusion-v1-2. (_Thanks to [runwayml](https://huggingface.co/runwayml)_)
106
+ - [wav2vec](https://huggingface.co/facebook/wav2vec2-base-960h): wav audio to vector model from [Facebook](https://huggingface.co/facebook/wav2vec2-base-960h).
107
+ - [facelib](https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0): pretrained face parse models
108
+ - [realesrgan](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth): background upsample model
109
+ - [CodeFormer](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0): pretrained [Codeformer](https://github.com/sczhou/CodeFormer) model, it's optional to download it, only if you want to train our video super-resolution model from scratch
110
+
111
+ Finally, these pretrained models should be organized as follows:
112
+
113
+ ```text
114
+ ./pretrained_models/
115
+ |-- audio_separator/
116
+ | |-- download_checks.json
117
+ | |-- mdx_model_data.json
118
+ | |-- vr_model_data.json
119
+ | `-- Kim_Vocal_2.onnx
120
+ |-- CodeFormer/
121
+ | |-- codeformer.pth
122
+ | `-- vqgan_code1024.pth
123
+ |-- face_analysis/
124
+ | `-- models/
125
+ | |-- face_landmarker_v2_with_blendshapes.task # face landmarker model from mediapipe
126
+ | |-- 1k3d68.onnx
127
+ | |-- 2d106det.onnx
128
+ | |-- genderage.onnx
129
+ | |-- glintr100.onnx
130
+ | `-- scrfd_10g_bnkps.onnx
131
+ |-- facelib
132
+ | |-- detection_mobilenet0.25_Final.pth
133
+ | |-- detection_Resnet50_Final.pth
134
+ | |-- parsing_parsenet.pth
135
+ | |-- yolov5l-face.pth
136
+ | `-- yolov5n-face.pth
137
+ |-- hallo2
138
+ | |-- net_g.pth
139
+ | `-- net.pth
140
+ |-- motion_module/
141
+ | `-- mm_sd_v15_v2.ckpt
142
+ |-- realesrgan
143
+ | `-- RealESRGAN_x2plus.pth
144
+ |-- sd-vae-ft-mse/
145
+ | |-- config.json
146
+ | `-- diffusion_pytorch_model.safetensors
147
+ |-- stable-diffusion-v1-5/
148
+ | `-- unet/
149
+ | |-- config.json
150
+ | `-- diffusion_pytorch_model.safetensors
151
+ `-- wav2vec/
152
+ `-- wav2vec2-base-960h/
153
+ |-- config.json
154
+ |-- feature_extractor_config.json
155
+ |-- model.safetensors
156
+ |-- preprocessor_config.json
157
+ |-- special_tokens_map.json
158
+ |-- tokenizer_config.json
159
+ `-- vocab.json
160
+ ```
161
+
162
+ ### 🛠️ Prepare Inference Data
163
+
164
+ Hallo has a few simple requirements for input data:
165
+
166
+ For the source image:
167
+
168
+ 1. It should be cropped into squares.
169
+ 2. The face should be the main focus, making up 50%-70% of the image.
170
+ 3. The face should be facing forward, with a rotation angle of less than 30° (no side profiles).
171
+
172
+ For the driving audio:
173
+
174
+ 1. It must be in WAV format.
175
+ 2. It must be in English since our training datasets are only in this language.
176
+ 3. Ensure the vocals are clear; background music is acceptable.
177
+
178
+ We have provided [some samples](examples/) for your reference.
179
+
180
+ ### 🎮 Run Inference
181
+
182
+ #### Long-Duration animation
183
+
184
+ Simply to run the `scripts/inference_long.py` and change `source_image`, `driving_audio` and `save_path` in the config file:
185
+
186
+ ```bash
187
+ python scripts/inference_long.py --config ./configs/inference/long.yaml
188
+ ```
189
+
190
+ Animation results will be saved at `save_path`. You can find more examples for inference at [examples folder](https://github.com/fudan-generative-vision/hallo2/tree/main/examples).
191
+
192
+ For more options:
193
+
194
+ ```shell
195
+ usage: inference_long.py [-h] [-c CONFIG] [--source_image SOURCE_IMAGE] [--driving_audio DRIVING_AUDIO] [--pose_weight POSE_WEIGHT]
196
+ [--face_weight FACE_WEIGHT] [--lip_weight LIP_WEIGHT] [--face_expand_ratio FACE_EXPAND_RATIO]
197
+
198
+ options:
199
+ -h, --help show this help message and exit
200
+ -c CONFIG, --config CONFIG
201
+ --source_image SOURCE_IMAGE
202
+ source image
203
+ --driving_audio DRIVING_AUDIO
204
+ driving audio
205
+ --pose_weight POSE_WEIGHT
206
+ weight of pose
207
+ --face_weight FACE_WEIGHT
208
+ weight of face
209
+ --lip_weight LIP_WEIGHT
210
+ weight of lip
211
+ --face_expand_ratio FACE_EXPAND_RATIO
212
+ face region
213
+ ```
214
+
215
+ #### High-Resolution animation
216
+
217
+ Simply to run the `scripts/video_sr.py` and pass `input_video` and `output_path`:
218
+
219
+ ```bash
220
+ python scripts/video_sr.py --input_path [input_video] --output_path [output_dir] --bg_upsampler realesrgan --face_upsample -w 1 -s 4
221
+ ```
222
+
223
+ Animation results will be saved at `output_dir`.
224
+
225
+ For more options:
226
+
227
+ ```shell
228
+ usage: video_sr.py [-h] [-i INPUT_PATH] [-o OUTPUT_PATH] [-w FIDELITY_WEIGHT] [-s UPSCALE] [--has_aligned] [--only_center_face] [--draw_box]
229
+ [--detection_model DETECTION_MODEL] [--bg_upsampler BG_UPSAMPLER] [--face_upsample] [--bg_tile BG_TILE] [--suffix SUFFIX]
230
+
231
+ options:
232
+ -h, --help show this help message and exit
233
+ -i INPUT_PATH, --input_path INPUT_PATH
234
+ Input video
235
+ -o OUTPUT_PATH, --output_path OUTPUT_PATH
236
+ Output folder.
237
+ -w FIDELITY_WEIGHT, --fidelity_weight FIDELITY_WEIGHT
238
+ Balance the quality and fidelity. Default: 0.5
239
+ -s UPSCALE, --upscale UPSCALE
240
+ The final upsampling scale of the image. Default: 2
241
+ --has_aligned Input are cropped and aligned faces. Default: False
242
+ --only_center_face Only restore the center face. Default: False
243
+ --draw_box Draw the bounding box for the detected faces. Default: False
244
+ --detection_model DETECTION_MODEL
245
+ Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n. Default: retinaface_resnet50
246
+ --bg_upsampler BG_UPSAMPLER
247
+ Background upsampler. Optional: realesrgan
248
+ --face_upsample Face upsampler after enhancement. Default: False
249
+ --bg_tile BG_TILE Tile size for background sampler. Default: 400
250
+ --suffix SUFFIX Suffix of the restored faces. Default: None
251
+ ```
252
+
253
+ > NOTICE: The High-Resolution animation feature is a modified version of [CodeFormer](https://github.com/sczhou/CodeFormer). When using or redistributing this feature, please comply with the [S-Lab License 1.0](https://github.com/sczhou/CodeFormer?tab=License-1-ov-file). We kindly request that you respect the terms of this license in any usage or redistribution of this component.
254
+
255
+ ## Training
256
+
257
+ ### Long-Duration animation
258
+
259
+ #### prepare data for training
260
+
261
+ The training data, which utilizes some talking-face videos similar to the source images used for inference, also needs to meet the following requirements:
262
+
263
+ 1. It should be cropped into squares.
264
+ 2. The face should be the main focus, making up 50%-70% of the image.
265
+ 3. The face should be facing forward, with a rotation angle of less than 30° (no side profiles).
266
+
267
+ Organize your raw videos into the following directory structure:
268
+
269
+ ```text
270
+ dataset_name/
271
+ |-- videos/
272
+ | |-- 0001.mp4
273
+ | |-- 0002.mp4
274
+ | |-- 0003.mp4
275
+ | `-- 0004.mp4
276
+ ```
277
+
278
+ You can use any `dataset_name`, but ensure the `videos` directory is named as shown above.
279
+
280
+ Next, process the videos with the following commands:
281
+
282
+ ```bash
283
+ python -m scripts.data_preprocess --input_dir dataset_name/videos --step 1
284
+ python -m scripts.data_preprocess --input_dir dataset_name/videos --step 2
285
+ ```
286
+
287
+ **Note:** Execute steps 1 and 2 sequentially as they perform different tasks. Step 1 converts videos into frames, extracts audio from each video, and generates the necessary masks. Step 2 generates face embeddings using InsightFace and audio embeddings using Wav2Vec, and requires a GPU. For parallel processing, use the `-p` and `-r` arguments. The `-p` argument specifies the total number of instances to launch, dividing the data into `p` parts. The `-r` argument specifies which part the current process should handle. You need to manually launch multiple instances with different values for `-r`.
288
+
289
+ Generate the metadata JSON files with the following commands:
290
+
291
+ ```bash
292
+ python scripts/extract_meta_info_stage1.py -r path/to/dataset -n dataset_name
293
+ python scripts/extract_meta_info_stage2.py -r path/to/dataset -n dataset_name
294
+ ```
295
+
296
+ Replace `path/to/dataset` with the path to the parent directory of `videos`, such as `dataset_name` in the example above. This will generate `dataset_name_stage1.json` and `dataset_name_stage2.json` in the `./data` directory.
297
+
298
+ #### Training
299
+
300
+ Update the data meta path settings in the configuration YAML files, `configs/train/stage1.yaml` and `configs/train/stage2_long.yaml`:
301
+
302
+ ```yaml
303
+ #stage1.yaml
304
+ data:
305
+ meta_paths:
306
+ - ./data/dataset_name_stage1.json
307
+
308
+ #stage2.yaml
309
+ data:
310
+ meta_paths:
311
+ - ./data/dataset_name_stage2.json
312
+ ```
313
+
314
+ Start training with the following command:
315
+
316
+ ```shell
317
+ accelerate launch -m \
318
+ --config_file accelerate_config.yaml \
319
+ --machine_rank 0 \
320
+ --main_process_ip 0.0.0.0 \
321
+ --main_process_port 20055 \
322
+ --num_machines 1 \
323
+ --num_processes 8 \
324
+ scripts.train_stage1 --config ./configs/train/stage1.yaml
325
+ ```
326
+
327
+ ##### Accelerate Usage Explanation
328
+
329
+ The `accelerate launch` command is used to start the training process with distributed settings.
330
+
331
+ ```shell
332
+ accelerate launch [arguments] {training_script} --{training_script-argument-1} --{training_script-argument-2} ...
333
+ ```
334
+
335
+ **Arguments for Accelerate:**
336
+
337
+ - `-m, --module`: Interpret the launch script as a Python module.
338
+ - `--config_file`: Configuration file for Hugging Face Accelerate.
339
+ - `--machine_rank`: Rank of the current machine in a multi-node setup.
340
+ - `--main_process_ip`: IP address of the master node.
341
+ - `--main_process_port`: Port of the master node.
342
+ - `--num_machines`: Total number of nodes participating in the training.
343
+ - `--num_processes`: Total number of processes for training, matching the total number of GPUs across all machines.
344
+
345
+ **Arguments for Training:**
346
+
347
+ - `{training_script}`: The training script, such as `scripts.train_stage1` or `scripts.train_stage2`.
348
+ - `--{training_script-argument-1}`: Arguments specific to the training script. Our training scripts accept one argument, `--config`, to specify the training configuration file.
349
+
350
+ For multi-node training, you need to manually run the command with different `machine_rank` on each node separately.
351
+
352
+ For more settings, refer to the [Accelerate documentation](https://huggingface.co/docs/accelerate/en/index).
353
+
354
+ ### High-Resolution animation
355
+
356
+ #### Training
357
+
358
+ ##### prepare data for training
359
+
360
+ We use the VFHQ dataset for training, you can download from its [homepage](https://liangbinxie.github.io/projects/vfhq/). Then updata `dataroot_gt` in `./configs/train/video_sr.yaml`.
361
+
362
+ #### training
363
+
364
+ Start training with the following command:
365
+
366
+ ```shell
367
+ python -m torch.distributed.launch --nproc_per_node=8 --master_port=4322 \
368
+ basicsr/train.py -opt ./configs/train/video_sr.yaml \
369
+ --launcher pytorch
370
+ ```
371
+
372
+ ## 📝 Citation
373
+
374
+ If you find our work useful for your research, please consider citing the paper:
375
+
376
+ ```
377
+ @misc{cui2024hallo2,
378
+ title={Hallo2: Long-Duration and High-Resolution Audio-driven Portrait Image Animation},
379
+ author={Jiahao Cui and Hui Li and Yao Yao and Hao Zhu and Hanlin Shang and Kaihui Cheng and Hang Zhou and Siyu Zhu and️ Jingdong Wang},
380
+ year={2024},
381
+ eprint={2410.07718},
382
+ archivePrefix={arXiv},
383
+ primaryClass={cs.CV}
384
+ }
385
+ ```
386
+
387
+ ## 🌟 Opportunities Available
388
+
389
+ Multiple research positions are open at the **Generative Vision Lab, Fudan University**! Include:
390
+
391
+ - Research assistant
392
+ - Postdoctoral researcher
393
+ - PhD candidate
394
+ - Master students
395
+
396
+ Interested individuals are encouraged to contact us at [[email protected]](mailto://[email protected]) for further information.
397
+
398
+ ## ⚠️ Social Risks and Mitigations
399
+
400
+ The development of portrait image animation technologies driven by audio inputs poses social risks, such as the ethical implications of creating realistic portraits that could be misused for deepfakes. To mitigate these risks, it is crucial to establish ethical guidelines and responsible use practices. Privacy and consent concerns also arise from using individuals' images and voices. Addressing these involves transparent data usage policies, informed consent, and safeguarding privacy rights. By addressing these risks and implementing mitigations, the research aims to ensure the responsible and ethical development of this technology.
401
+
402
+ ## 🤗 Acknowledgements
403
+
404
+ We would like to thank the contributors to the [magic-animate](https://github.com/magic-research/magic-animate), [AnimateDiff](https://github.com/guoyww/AnimateDiff), [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui), [AniPortrait](https://github.com/Zejun-Yang/AniPortrait) and [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone) repositories, for their open research and exploration.
405
+
406
+ If we missed any open-source projects or related articles, we would like to complement the acknowledgement of this specific work immediately.
407
+
408
+ ## 👏 Community Contributors
409
+
410
+ Thank you to all the contributors who have helped to make this project better!
411
+
412
+ <a href="https://github.com/fudan-generative-vision/hallo2/graphs/contributors">
413
+ <img src="https://contrib.rocks/image?repo=fudan-generative-vision/hallo2" />
414
+ </a>
415
+