File size: 1,585 Bytes
781a53d 62c2c0d 4c92c87 62c2c0d c9453e7 62c2c0d fbd3bc9 62c2c0d c9453e7 62c2c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: apache-2.0
---
## Install `funasr_onnx`
```shell
pip install -U funasr_onnx
# For the users in China, you could install with the command:
# pip install -U funasr_onnx -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
## Download the model
```shell
git clone https://huggingface.co/funasr/paraformer-large
```
## Inference with runtime
### Speech Recognition
#### Paraformer
```python
from funasr_onnx import Paraformer
model_dir = "./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=1, quantize=True)
wav_path = ['./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
result = model(wav_path)
print(result)
```
- `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`
- `batch_size`: `1` (Default), the batch size duration inference
- `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)
- `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir`
- `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU
Input: wav formt file, support formats: `str, np.ndarray, List[str]`
Output: `List[str]`: recognition result
## Performance benchmark
Please ref to [benchmark](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/python/benchmark_onnx.md)
|