|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" LDMBERT model configuration""" |
|
import warnings |
|
from collections import OrderedDict |
|
from typing import Any, Mapping, Optional |
|
|
|
from transformers import PreTrainedTokenizer |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import TensorType, is_torch_available, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"ldm-bert": "https://huggingface.co/ldm-bert/resolve/main/config.json", |
|
} |
|
|
|
|
|
class LDMBertConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`LDMBertModel`]. It is used to instantiate a |
|
LDMBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the LDMBERT |
|
[facebook/ldmbert-large](https://huggingface.co/facebook/ldmbert-large) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50265): |
|
Vocabulary size of the LDMBERT model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`LDMBertModel`] or [`TFLDMBertModel`]. |
|
d_model (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the layers and the pooler layer. |
|
encoder_layers (`int`, *optional*, defaults to 12): |
|
Number of encoder layers. |
|
decoder_layers (`int`, *optional*, defaults to 12): |
|
Number of decoder layers. |
|
encoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
decoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
activation_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for activations inside the fully connected layer. |
|
classifier_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for classifier. |
|
max_position_embeddings (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
init_std (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
encoder_layerdrop: (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
decoder_layerdrop: (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
scale_embedding (`bool`, *optional*, defaults to `False`): |
|
Scale embeddings by diving by sqrt(d_model). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
num_labels: (`int`, *optional*, defaults to 3): |
|
The number of labels to use in [`LDMBertForSequenceClassification`]. |
|
forced_eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the token to force as the last generated token when `max_length` is reached. Usually set to |
|
`eos_token_id`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import LDMBertModel, LDMBertConfig |
|
|
|
>>> # Initializing a LDMBERT facebook/ldmbert-large style configuration |
|
>>> configuration = LDMBertConfig() |
|
|
|
>>> # Initializing a model from the facebook/ldmbert-large style configuration |
|
>>> model = LDMBertModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "ldmbert" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
max_position_embeddings=77, |
|
encoder_layers=32, |
|
encoder_ffn_dim=5120, |
|
encoder_attention_heads=8, |
|
head_dim=64, |
|
encoder_layerdrop=0.0, |
|
activation_function="gelu", |
|
d_model=1280, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
init_std=0.02, |
|
classifier_dropout=0.0, |
|
scale_embedding=False, |
|
use_cache=True, |
|
pad_token_id=0, |
|
**kwargs |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.d_model = d_model |
|
self.encoder_ffn_dim = encoder_ffn_dim |
|
self.encoder_layers = encoder_layers |
|
self.encoder_attention_heads = encoder_attention_heads |
|
self.head_dim = head_dim |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.activation_function = activation_function |
|
self.init_std = init_std |
|
self.encoder_layerdrop = encoder_layerdrop |
|
self.classifier_dropout = classifier_dropout |
|
self.use_cache = use_cache |
|
self.num_hidden_layers = encoder_layers |
|
self.scale_embedding = scale_embedding |
|
|
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|