valhalla commited on
Commit
1e97c97
·
1 Parent(s): 5470e96

Delete configuration_ldmbert.py

Browse files
Files changed (1) hide show
  1. configuration_ldmbert.py +0 -150
configuration_ldmbert.py DELETED
@@ -1,150 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ LDMBERT model configuration"""
16
- import warnings
17
- from collections import OrderedDict
18
- from typing import Any, Mapping, Optional
19
-
20
- from transformers import PreTrainedTokenizer
21
- from transformers.configuration_utils import PretrainedConfig
22
- from transformers.utils import TensorType, is_torch_available, logging
23
-
24
-
25
- logger = logging.get_logger(__name__)
26
-
27
- LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
28
- "ldm-bert": "https://huggingface.co/ldm-bert/resolve/main/config.json",
29
- }
30
-
31
-
32
- class LDMBertConfig(PretrainedConfig):
33
- r"""
34
- This is the configuration class to store the configuration of a [`LDMBertModel`]. It is used to instantiate a
35
- LDMBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
36
- with the defaults will yield a similar configuration to that of the LDMBERT
37
- [facebook/ldmbert-large](https://huggingface.co/facebook/ldmbert-large) architecture.
38
-
39
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
40
- documentation from [`PretrainedConfig`] for more information.
41
-
42
-
43
- Args:
44
- vocab_size (`int`, *optional*, defaults to 50265):
45
- Vocabulary size of the LDMBERT model. Defines the number of different tokens that can be represented by the
46
- `inputs_ids` passed when calling [`LDMBertModel`] or [`TFLDMBertModel`].
47
- d_model (`int`, *optional*, defaults to 1024):
48
- Dimensionality of the layers and the pooler layer.
49
- encoder_layers (`int`, *optional*, defaults to 12):
50
- Number of encoder layers.
51
- decoder_layers (`int`, *optional*, defaults to 12):
52
- Number of decoder layers.
53
- encoder_attention_heads (`int`, *optional*, defaults to 16):
54
- Number of attention heads for each attention layer in the Transformer encoder.
55
- decoder_attention_heads (`int`, *optional*, defaults to 16):
56
- Number of attention heads for each attention layer in the Transformer decoder.
57
- decoder_ffn_dim (`int`, *optional*, defaults to 4096):
58
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
59
- encoder_ffn_dim (`int`, *optional*, defaults to 4096):
60
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
61
- activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
62
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
63
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
64
- dropout (`float`, *optional*, defaults to 0.1):
65
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
- attention_dropout (`float`, *optional*, defaults to 0.0):
67
- The dropout ratio for the attention probabilities.
68
- activation_dropout (`float`, *optional*, defaults to 0.0):
69
- The dropout ratio for activations inside the fully connected layer.
70
- classifier_dropout (`float`, *optional*, defaults to 0.0):
71
- The dropout ratio for classifier.
72
- max_position_embeddings (`int`, *optional*, defaults to 1024):
73
- The maximum sequence length that this model might ever be used with. Typically set this to something large
74
- just in case (e.g., 512 or 1024 or 2048).
75
- init_std (`float`, *optional*, defaults to 0.02):
76
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
77
- encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
78
- The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
79
- for more details.
80
- decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
81
- The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
82
- for more details.
83
- scale_embedding (`bool`, *optional*, defaults to `False`):
84
- Scale embeddings by diving by sqrt(d_model).
85
- use_cache (`bool`, *optional*, defaults to `True`):
86
- Whether or not the model should return the last key/values attentions (not used by all models).
87
- num_labels: (`int`, *optional*, defaults to 3):
88
- The number of labels to use in [`LDMBertForSequenceClassification`].
89
- forced_eos_token_id (`int`, *optional*, defaults to 2):
90
- The id of the token to force as the last generated token when `max_length` is reached. Usually set to
91
- `eos_token_id`.
92
-
93
- Example:
94
-
95
- ```python
96
- >>> from transformers import LDMBertModel, LDMBertConfig
97
-
98
- >>> # Initializing a LDMBERT facebook/ldmbert-large style configuration
99
- >>> configuration = LDMBertConfig()
100
-
101
- >>> # Initializing a model from the facebook/ldmbert-large style configuration
102
- >>> model = LDMBertModel(configuration)
103
-
104
- >>> # Accessing the model configuration
105
- >>> configuration = model.config
106
- ```"""
107
- model_type = "ldmbert"
108
- keys_to_ignore_at_inference = ["past_key_values"]
109
- attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
110
-
111
- def __init__(
112
- self,
113
- vocab_size=30522,
114
- max_position_embeddings=77,
115
- encoder_layers=32,
116
- encoder_ffn_dim=5120,
117
- encoder_attention_heads=8,
118
- head_dim=64,
119
- encoder_layerdrop=0.0,
120
- activation_function="gelu",
121
- d_model=1280,
122
- dropout=0.1,
123
- attention_dropout=0.0,
124
- activation_dropout=0.0,
125
- init_std=0.02,
126
- classifier_dropout=0.0,
127
- scale_embedding=False,
128
- use_cache=True,
129
- pad_token_id=0,
130
- **kwargs
131
- ):
132
- self.vocab_size = vocab_size
133
- self.max_position_embeddings = max_position_embeddings
134
- self.d_model = d_model
135
- self.encoder_ffn_dim = encoder_ffn_dim
136
- self.encoder_layers = encoder_layers
137
- self.encoder_attention_heads = encoder_attention_heads
138
- self.head_dim = head_dim
139
- self.dropout = dropout
140
- self.attention_dropout = attention_dropout
141
- self.activation_dropout = activation_dropout
142
- self.activation_function = activation_function
143
- self.init_std = init_std
144
- self.encoder_layerdrop = encoder_layerdrop
145
- self.classifier_dropout = classifier_dropout
146
- self.use_cache = use_cache
147
- self.num_hidden_layers = encoder_layers
148
- self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
149
-
150
- super().__init__(pad_token_id=pad_token_id, **kwargs)