Delete configuration_ldmbert.py
Browse files- configuration_ldmbert.py +0 -150
configuration_ldmbert.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" LDMBERT model configuration"""
|
16 |
-
import warnings
|
17 |
-
from collections import OrderedDict
|
18 |
-
from typing import Any, Mapping, Optional
|
19 |
-
|
20 |
-
from transformers import PreTrainedTokenizer
|
21 |
-
from transformers.configuration_utils import PretrainedConfig
|
22 |
-
from transformers.utils import TensorType, is_torch_available, logging
|
23 |
-
|
24 |
-
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
-
|
27 |
-
LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
28 |
-
"ldm-bert": "https://huggingface.co/ldm-bert/resolve/main/config.json",
|
29 |
-
}
|
30 |
-
|
31 |
-
|
32 |
-
class LDMBertConfig(PretrainedConfig):
|
33 |
-
r"""
|
34 |
-
This is the configuration class to store the configuration of a [`LDMBertModel`]. It is used to instantiate a
|
35 |
-
LDMBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
36 |
-
with the defaults will yield a similar configuration to that of the LDMBERT
|
37 |
-
[facebook/ldmbert-large](https://huggingface.co/facebook/ldmbert-large) architecture.
|
38 |
-
|
39 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
-
documentation from [`PretrainedConfig`] for more information.
|
41 |
-
|
42 |
-
|
43 |
-
Args:
|
44 |
-
vocab_size (`int`, *optional*, defaults to 50265):
|
45 |
-
Vocabulary size of the LDMBERT model. Defines the number of different tokens that can be represented by the
|
46 |
-
`inputs_ids` passed when calling [`LDMBertModel`] or [`TFLDMBertModel`].
|
47 |
-
d_model (`int`, *optional*, defaults to 1024):
|
48 |
-
Dimensionality of the layers and the pooler layer.
|
49 |
-
encoder_layers (`int`, *optional*, defaults to 12):
|
50 |
-
Number of encoder layers.
|
51 |
-
decoder_layers (`int`, *optional*, defaults to 12):
|
52 |
-
Number of decoder layers.
|
53 |
-
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
54 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
-
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
56 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
57 |
-
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
58 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
59 |
-
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
60 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
61 |
-
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
62 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
63 |
-
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
64 |
-
dropout (`float`, *optional*, defaults to 0.1):
|
65 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
66 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
67 |
-
The dropout ratio for the attention probabilities.
|
68 |
-
activation_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
-
The dropout ratio for activations inside the fully connected layer.
|
70 |
-
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
71 |
-
The dropout ratio for classifier.
|
72 |
-
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
73 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
74 |
-
just in case (e.g., 512 or 1024 or 2048).
|
75 |
-
init_std (`float`, *optional*, defaults to 0.02):
|
76 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
77 |
-
encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
78 |
-
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
79 |
-
for more details.
|
80 |
-
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
81 |
-
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
82 |
-
for more details.
|
83 |
-
scale_embedding (`bool`, *optional*, defaults to `False`):
|
84 |
-
Scale embeddings by diving by sqrt(d_model).
|
85 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
86 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
87 |
-
num_labels: (`int`, *optional*, defaults to 3):
|
88 |
-
The number of labels to use in [`LDMBertForSequenceClassification`].
|
89 |
-
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
90 |
-
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
91 |
-
`eos_token_id`.
|
92 |
-
|
93 |
-
Example:
|
94 |
-
|
95 |
-
```python
|
96 |
-
>>> from transformers import LDMBertModel, LDMBertConfig
|
97 |
-
|
98 |
-
>>> # Initializing a LDMBERT facebook/ldmbert-large style configuration
|
99 |
-
>>> configuration = LDMBertConfig()
|
100 |
-
|
101 |
-
>>> # Initializing a model from the facebook/ldmbert-large style configuration
|
102 |
-
>>> model = LDMBertModel(configuration)
|
103 |
-
|
104 |
-
>>> # Accessing the model configuration
|
105 |
-
>>> configuration = model.config
|
106 |
-
```"""
|
107 |
-
model_type = "ldmbert"
|
108 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
109 |
-
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
110 |
-
|
111 |
-
def __init__(
|
112 |
-
self,
|
113 |
-
vocab_size=30522,
|
114 |
-
max_position_embeddings=77,
|
115 |
-
encoder_layers=32,
|
116 |
-
encoder_ffn_dim=5120,
|
117 |
-
encoder_attention_heads=8,
|
118 |
-
head_dim=64,
|
119 |
-
encoder_layerdrop=0.0,
|
120 |
-
activation_function="gelu",
|
121 |
-
d_model=1280,
|
122 |
-
dropout=0.1,
|
123 |
-
attention_dropout=0.0,
|
124 |
-
activation_dropout=0.0,
|
125 |
-
init_std=0.02,
|
126 |
-
classifier_dropout=0.0,
|
127 |
-
scale_embedding=False,
|
128 |
-
use_cache=True,
|
129 |
-
pad_token_id=0,
|
130 |
-
**kwargs
|
131 |
-
):
|
132 |
-
self.vocab_size = vocab_size
|
133 |
-
self.max_position_embeddings = max_position_embeddings
|
134 |
-
self.d_model = d_model
|
135 |
-
self.encoder_ffn_dim = encoder_ffn_dim
|
136 |
-
self.encoder_layers = encoder_layers
|
137 |
-
self.encoder_attention_heads = encoder_attention_heads
|
138 |
-
self.head_dim = head_dim
|
139 |
-
self.dropout = dropout
|
140 |
-
self.attention_dropout = attention_dropout
|
141 |
-
self.activation_dropout = activation_dropout
|
142 |
-
self.activation_function = activation_function
|
143 |
-
self.init_std = init_std
|
144 |
-
self.encoder_layerdrop = encoder_layerdrop
|
145 |
-
self.classifier_dropout = classifier_dropout
|
146 |
-
self.use_cache = use_cache
|
147 |
-
self.num_hidden_layers = encoder_layers
|
148 |
-
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
149 |
-
|
150 |
-
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|