fydhfzh commited on
Commit
bd190f1
·
verified ·
1 Parent(s): ed03ac3

End of training

Browse files
README.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: asapp/sew-d-tiny-100k-ft-ls100h
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: sewd-classifier-aug-ref
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # sewd-classifier-aug-ref
20
+
21
+ This model is a fine-tuned version of [asapp/sew-d-tiny-100k-ft-ls100h](https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.2210
24
+ - Accuracy: 0.6402
25
+ - Precision: 0.6291
26
+ - Recall: 0.6402
27
+ - F1: 0.6137
28
+ - Binary: 0.7478
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 128
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
62
+ | No log | 0.13 | 50 | 4.3839 | 0.0337 | 0.0029 | 0.0337 | 0.0052 | 0.2004 |
63
+ | No log | 0.27 | 100 | 4.1179 | 0.0687 | 0.0353 | 0.0687 | 0.0281 | 0.3295 |
64
+ | No log | 0.4 | 150 | 3.8682 | 0.0889 | 0.0335 | 0.0889 | 0.0338 | 0.3523 |
65
+ | No log | 0.54 | 200 | 3.6594 | 0.0997 | 0.0311 | 0.0997 | 0.0366 | 0.3635 |
66
+ | No log | 0.67 | 250 | 3.5084 | 0.1280 | 0.0534 | 0.1280 | 0.0494 | 0.3838 |
67
+ | No log | 0.81 | 300 | 3.3946 | 0.1469 | 0.0476 | 0.1469 | 0.0628 | 0.3964 |
68
+ | No log | 0.94 | 350 | 3.2570 | 0.1604 | 0.0699 | 0.1604 | 0.0830 | 0.4082 |
69
+ | 3.9151 | 1.08 | 400 | 3.1540 | 0.1806 | 0.0844 | 0.1806 | 0.0987 | 0.4224 |
70
+ | 3.9151 | 1.21 | 450 | 3.0449 | 0.1846 | 0.1000 | 0.1846 | 0.1005 | 0.4260 |
71
+ | 3.9151 | 1.35 | 500 | 2.9543 | 0.2237 | 0.1403 | 0.2237 | 0.1376 | 0.4534 |
72
+ | 3.9151 | 1.48 | 550 | 2.8691 | 0.2507 | 0.1621 | 0.2507 | 0.1606 | 0.4706 |
73
+ | 3.9151 | 1.62 | 600 | 2.7812 | 0.2493 | 0.1520 | 0.2493 | 0.1592 | 0.4718 |
74
+ | 3.9151 | 1.75 | 650 | 2.6598 | 0.2871 | 0.1855 | 0.2871 | 0.1856 | 0.4981 |
75
+ | 3.9151 | 1.89 | 700 | 2.6099 | 0.2951 | 0.2123 | 0.2951 | 0.2019 | 0.5047 |
76
+ | 3.1406 | 2.02 | 750 | 2.5039 | 0.3235 | 0.2106 | 0.3235 | 0.2230 | 0.5236 |
77
+ | 3.1406 | 2.16 | 800 | 2.4359 | 0.3383 | 0.2454 | 0.3383 | 0.2501 | 0.5358 |
78
+ | 3.1406 | 2.29 | 850 | 2.3869 | 0.3154 | 0.2329 | 0.3154 | 0.2324 | 0.5179 |
79
+ | 3.1406 | 2.43 | 900 | 2.3144 | 0.3612 | 0.2937 | 0.3612 | 0.2798 | 0.5513 |
80
+ | 3.1406 | 2.56 | 950 | 2.2470 | 0.3720 | 0.3122 | 0.3720 | 0.2908 | 0.5584 |
81
+ | 3.1406 | 2.7 | 1000 | 2.1944 | 0.3774 | 0.3099 | 0.3774 | 0.2992 | 0.5632 |
82
+ | 3.1406 | 2.83 | 1050 | 2.1421 | 0.4030 | 0.3250 | 0.4030 | 0.3226 | 0.5819 |
83
+ | 3.1406 | 2.97 | 1100 | 2.0630 | 0.4137 | 0.3442 | 0.4137 | 0.3336 | 0.5899 |
84
+ | 2.6974 | 3.1 | 1150 | 2.0115 | 0.4245 | 0.3679 | 0.4245 | 0.3510 | 0.5974 |
85
+ | 2.6974 | 3.24 | 1200 | 1.9716 | 0.4434 | 0.3964 | 0.4434 | 0.3729 | 0.6093 |
86
+ | 2.6974 | 3.37 | 1250 | 1.9255 | 0.4488 | 0.3972 | 0.4488 | 0.3883 | 0.6150 |
87
+ | 2.6974 | 3.51 | 1300 | 1.8715 | 0.4623 | 0.4112 | 0.4623 | 0.3969 | 0.6228 |
88
+ | 2.6974 | 3.64 | 1350 | 1.8223 | 0.4825 | 0.4534 | 0.4825 | 0.4222 | 0.6369 |
89
+ | 2.6974 | 3.78 | 1400 | 1.7951 | 0.5013 | 0.4728 | 0.5013 | 0.4500 | 0.6511 |
90
+ | 2.6974 | 3.91 | 1450 | 1.7427 | 0.5270 | 0.4855 | 0.5270 | 0.4804 | 0.6686 |
91
+ | 2.3963 | 4.05 | 1500 | 1.7319 | 0.5 | 0.4618 | 0.5 | 0.4452 | 0.6493 |
92
+ | 2.3963 | 4.18 | 1550 | 1.7098 | 0.4960 | 0.4588 | 0.4960 | 0.4454 | 0.6473 |
93
+ | 2.3963 | 4.32 | 1600 | 1.6518 | 0.5310 | 0.5051 | 0.5310 | 0.4855 | 0.6709 |
94
+ | 2.3963 | 4.45 | 1650 | 1.6535 | 0.5067 | 0.4838 | 0.5067 | 0.4552 | 0.6539 |
95
+ | 2.3963 | 4.59 | 1700 | 1.6011 | 0.5539 | 0.5106 | 0.5539 | 0.5061 | 0.6865 |
96
+ | 2.3963 | 4.72 | 1750 | 1.5894 | 0.5404 | 0.4940 | 0.5404 | 0.4923 | 0.6767 |
97
+ | 2.3963 | 4.86 | 1800 | 1.5580 | 0.5660 | 0.5371 | 0.5660 | 0.5285 | 0.6964 |
98
+ | 2.3963 | 4.99 | 1850 | 1.5375 | 0.5431 | 0.5032 | 0.5431 | 0.4968 | 0.6803 |
99
+ | 2.1926 | 5.12 | 1900 | 1.5166 | 0.5620 | 0.5237 | 0.5620 | 0.5193 | 0.6941 |
100
+ | 2.1926 | 5.26 | 1950 | 1.5168 | 0.5526 | 0.5198 | 0.5526 | 0.5085 | 0.6860 |
101
+ | 2.1926 | 5.39 | 2000 | 1.4773 | 0.5836 | 0.5615 | 0.5836 | 0.5455 | 0.7073 |
102
+ | 2.1926 | 5.53 | 2050 | 1.4488 | 0.5782 | 0.5564 | 0.5782 | 0.5396 | 0.7054 |
103
+ | 2.1926 | 5.66 | 2100 | 1.4335 | 0.5916 | 0.5691 | 0.5916 | 0.5560 | 0.7143 |
104
+ | 2.1926 | 5.8 | 2150 | 1.4078 | 0.5957 | 0.5782 | 0.5957 | 0.5641 | 0.7177 |
105
+ | 2.1926 | 5.93 | 2200 | 1.4092 | 0.5863 | 0.5691 | 0.5863 | 0.5506 | 0.7105 |
106
+ | 2.0446 | 6.07 | 2250 | 1.3942 | 0.5755 | 0.5405 | 0.5755 | 0.5334 | 0.7026 |
107
+ | 2.0446 | 6.2 | 2300 | 1.3828 | 0.5930 | 0.5776 | 0.5930 | 0.5613 | 0.7148 |
108
+ | 2.0446 | 6.34 | 2350 | 1.3625 | 0.6065 | 0.5886 | 0.6065 | 0.5688 | 0.7247 |
109
+ | 2.0446 | 6.47 | 2400 | 1.3444 | 0.6119 | 0.6008 | 0.6119 | 0.5754 | 0.7284 |
110
+ | 2.0446 | 6.61 | 2450 | 1.3088 | 0.6267 | 0.6134 | 0.6267 | 0.5914 | 0.7388 |
111
+ | 2.0446 | 6.74 | 2500 | 1.3183 | 0.6038 | 0.5869 | 0.6038 | 0.5729 | 0.7228 |
112
+ | 2.0446 | 6.88 | 2550 | 1.3000 | 0.6173 | 0.5886 | 0.6173 | 0.5810 | 0.7322 |
113
+ | 1.9441 | 7.01 | 2600 | 1.2930 | 0.6213 | 0.6048 | 0.6213 | 0.5900 | 0.7341 |
114
+ | 1.9441 | 7.15 | 2650 | 1.2757 | 0.6226 | 0.6097 | 0.6226 | 0.5959 | 0.7361 |
115
+ | 1.9441 | 7.28 | 2700 | 1.2787 | 0.6226 | 0.6091 | 0.6226 | 0.5963 | 0.7361 |
116
+ | 1.9441 | 7.42 | 2750 | 1.2566 | 0.6240 | 0.6204 | 0.6240 | 0.5983 | 0.7375 |
117
+ | 1.9441 | 7.55 | 2800 | 1.2549 | 0.6253 | 0.6055 | 0.6253 | 0.5970 | 0.7380 |
118
+ | 1.9441 | 7.69 | 2850 | 1.2396 | 0.6240 | 0.6255 | 0.6240 | 0.5954 | 0.7371 |
119
+ | 1.9441 | 7.82 | 2900 | 1.2400 | 0.6388 | 0.6361 | 0.6388 | 0.6128 | 0.7478 |
120
+ | 1.9441 | 7.96 | 2950 | 1.2369 | 0.6294 | 0.6188 | 0.6294 | 0.5996 | 0.7407 |
121
+ | 1.8636 | 8.09 | 3000 | 1.2235 | 0.6375 | 0.6363 | 0.6375 | 0.6151 | 0.7460 |
122
+ | 1.8636 | 8.23 | 3050 | 1.2178 | 0.6456 | 0.6415 | 0.6456 | 0.6196 | 0.7520 |
123
+ | 1.8636 | 8.36 | 3100 | 1.2093 | 0.6402 | 0.6346 | 0.6402 | 0.6149 | 0.7482 |
124
+ | 1.8636 | 8.5 | 3150 | 1.2210 | 0.6402 | 0.6291 | 0.6402 | 0.6137 | 0.7478 |
125
+
126
+
127
+ ### Framework versions
128
+
129
+ - Transformers 4.38.2
130
+ - Pytorch 2.3.0
131
+ - Datasets 2.19.1
132
+ - Tokenizers 0.15.1
runs/Jul12_19-31-56_LAPTOP-1GID9RGH/events.out.tfevents.1720787519.LAPTOP-1GID9RGH.20112.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:31f50bc680af623210d0d18911680333df5f091b345531f15ca8ce13325d6b7d
3
- size 42384
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dda48b00298f63127aafd02958714a5941a9ba5c288eb77a9fba3386eb0002c3
3
+ size 44515