gabehubner
commited on
End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1710354675.1b7450536ea5.3929.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.0890
|
21 |
+
- Answer: {'precision': 0.38420107719928187, 'recall': 0.5290482076637825, 'f1': 0.4451378055122205, 'number': 809}
|
22 |
+
- Header: {'precision': 0.28888888888888886, 'recall': 0.2184873949579832, 'f1': 0.24880382775119617, 'number': 119}
|
23 |
+
- Question: {'precision': 0.48959136468774095, 'recall': 0.596244131455399, 'f1': 0.5376799322607958, 'number': 1065}
|
24 |
+
- Overall Precision: 0.4354
|
25 |
+
- Overall Recall: 0.5464
|
26 |
+
- Overall F1: 0.4846
|
27 |
+
- Overall Accuracy: 0.6258
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7643 | 1.0 | 10 | 1.5177 | {'precision': 0.052202283849918436, 'recall': 0.07911001236093942, 'f1': 0.06289926289926291, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2581360946745562, 'recall': 0.3276995305164319, 'f1': 0.2887877534133223, 'number': 1065} | 0.1602 | 0.2072 | 0.1807 | 0.3823 |
|
60 |
+
| 1.4448 | 2.0 | 20 | 1.3359 | {'precision': 0.18779342723004694, 'recall': 0.39555006180469715, 'f1': 0.2546756864305611, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2733245729303548, 'recall': 0.39061032863849765, 'f1': 0.321608040201005, 'number': 1065} | 0.2273 | 0.3693 | 0.2814 | 0.4206 |
|
61 |
+
| 1.2967 | 3.0 | 30 | 1.2160 | {'precision': 0.2261437908496732, 'recall': 0.4276885043263288, 'f1': 0.29585292860196666, 'number': 809} | {'precision': 0.02040816326530612, 'recall': 0.008403361344537815, 'f1': 0.011904761904761904, 'number': 119} | {'precision': 0.34987113402061853, 'recall': 0.5098591549295775, 'f1': 0.41497898356897206, 'number': 1065} | 0.2843 | 0.4466 | 0.3474 | 0.4803 |
|
62 |
+
| 1.172 | 4.0 | 40 | 1.1080 | {'precision': 0.2609299097848716, 'recall': 0.4647713226205192, 'f1': 0.3342222222222222, 'number': 809} | {'precision': 0.2, 'recall': 0.12605042016806722, 'f1': 0.15463917525773196, 'number': 119} | {'precision': 0.39096126255380204, 'recall': 0.5117370892018779, 'f1': 0.4432696217974787, 'number': 1065} | 0.3216 | 0.4696 | 0.3818 | 0.5682 |
|
63 |
+
| 1.0668 | 5.0 | 50 | 1.1224 | {'precision': 0.2859304084720121, 'recall': 0.4672435105067985, 'f1': 0.3547630220553731, 'number': 809} | {'precision': 0.2571428571428571, 'recall': 0.15126050420168066, 'f1': 0.19047619047619044, 'number': 119} | {'precision': 0.39935691318327976, 'recall': 0.5830985915492958, 'f1': 0.47404580152671755, 'number': 1065} | 0.3451 | 0.5103 | 0.4117 | 0.5719 |
|
64 |
+
| 1.0053 | 6.0 | 60 | 1.0842 | {'precision': 0.31098430813124106, 'recall': 0.5389369592088998, 'f1': 0.3943916779737675, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.17647058823529413, 'f1': 0.23076923076923078, 'number': 119} | {'precision': 0.4626998223801066, 'recall': 0.4892018779342723, 'f1': 0.4755819260611593, 'number': 1065} | 0.3775 | 0.4907 | 0.4267 | 0.5869 |
|
65 |
+
| 0.9367 | 7.0 | 70 | 1.0354 | {'precision': 0.33884297520661155, 'recall': 0.4561186650185414, 'f1': 0.38883034773445735, 'number': 809} | {'precision': 0.27848101265822783, 'recall': 0.18487394957983194, 'f1': 0.2222222222222222, 'number': 119} | {'precision': 0.4579100145137881, 'recall': 0.5924882629107981, 'f1': 0.5165779778960293, 'number': 1065} | 0.4014 | 0.5128 | 0.4503 | 0.6069 |
|
66 |
+
| 0.8736 | 8.0 | 80 | 1.0367 | {'precision': 0.3433583959899749, 'recall': 0.5080346106304079, 'f1': 0.4097706879361914, 'number': 809} | {'precision': 0.24675324675324675, 'recall': 0.15966386554621848, 'f1': 0.19387755102040818, 'number': 119} | {'precision': 0.4403292181069959, 'recall': 0.6028169014084507, 'f1': 0.5089179548156956, 'number': 1065} | 0.3924 | 0.5379 | 0.4538 | 0.6083 |
|
67 |
+
| 0.8322 | 9.0 | 90 | 1.0585 | {'precision': 0.38257575757575757, 'recall': 0.49938195302843014, 'f1': 0.43324396782841823, 'number': 809} | {'precision': 0.1919191919191919, 'recall': 0.15966386554621848, 'f1': 0.17431192660550457, 'number': 119} | {'precision': 0.48465266558966075, 'recall': 0.5633802816901409, 'f1': 0.5210594876248372, 'number': 1065} | 0.4275 | 0.5133 | 0.4665 | 0.6171 |
|
68 |
+
| 0.8201 | 10.0 | 100 | 1.0589 | {'precision': 0.3753527751646284, 'recall': 0.4932014833127318, 'f1': 0.42628205128205127, 'number': 809} | {'precision': 0.275, 'recall': 0.18487394957983194, 'f1': 0.22110552763819097, 'number': 119} | {'precision': 0.4782945736434108, 'recall': 0.5793427230046948, 'f1': 0.5239915074309979, 'number': 1065} | 0.4266 | 0.5208 | 0.4690 | 0.6086 |
|
69 |
+
| 0.7451 | 11.0 | 110 | 1.0393 | {'precision': 0.3754716981132076, 'recall': 0.4919653893695921, 'f1': 0.42589620117710003, 'number': 809} | {'precision': 0.2804878048780488, 'recall': 0.19327731092436976, 'f1': 0.22885572139303487, 'number': 119} | {'precision': 0.4541832669322709, 'recall': 0.6422535211267606, 'f1': 0.5320886814469078, 'number': 1065} | 0.4173 | 0.5544 | 0.4762 | 0.6132 |
|
70 |
+
| 0.7445 | 12.0 | 120 | 1.0649 | {'precision': 0.3752166377816291, 'recall': 0.5352286773794809, 'f1': 0.4411614875191034, 'number': 809} | {'precision': 0.2653061224489796, 'recall': 0.2184873949579832, 'f1': 0.23963133640552997, 'number': 119} | {'precision': 0.49351701782820095, 'recall': 0.571830985915493, 'f1': 0.5297955632883862, 'number': 1065} | 0.4296 | 0.5359 | 0.4769 | 0.6145 |
|
71 |
+
| 0.7064 | 13.0 | 130 | 1.1267 | {'precision': 0.3775933609958506, 'recall': 0.5624227441285538, 'f1': 0.45183714001986097, 'number': 809} | {'precision': 0.3116883116883117, 'recall': 0.20168067226890757, 'f1': 0.24489795918367344, 'number': 119} | {'precision': 0.5072094995759118, 'recall': 0.5615023474178403, 'f1': 0.5329768270944741, 'number': 1065} | 0.4376 | 0.5404 | 0.4836 | 0.6174 |
|
72 |
+
| 0.6846 | 14.0 | 140 | 1.0692 | {'precision': 0.3945841392649903, 'recall': 0.5043263288009888, 'f1': 0.44275637547476937, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.21008403361344538, 'f1': 0.2450980392156863, 'number': 119} | {'precision': 0.48787878787878786, 'recall': 0.6046948356807512, 'f1': 0.5400419287211741, 'number': 1065} | 0.4416 | 0.5404 | 0.4860 | 0.6198 |
|
73 |
+
| 0.6688 | 15.0 | 150 | 1.0890 | {'precision': 0.38420107719928187, 'recall': 0.5290482076637825, 'f1': 0.4451378055122205, 'number': 809} | {'precision': 0.28888888888888886, 'recall': 0.2184873949579832, 'f1': 0.24880382775119617, 'number': 119} | {'precision': 0.48959136468774095, 'recall': 0.596244131455399, 'f1': 0.5376799322607958, 'number': 1065} | 0.4354 | 0.5464 | 0.4846 | 0.6258 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.38.2
|
79 |
+
- Pytorch 2.2.1+cu121
|
80 |
+
- Datasets 2.18.0
|
81 |
+
- Tokenizers 0.15.2
|
logs/events.out.tfevents.1710354675.1b7450536ea5.3929.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed45ace379cd3b2c42a150f3085bf538c0d0b213992c6c2d8cd3512250bd72a1
|
3 |
+
size 15738
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c63f86ddd355554e93834574cb99b4194c966a4e922b37359297e68f301a748e
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|