File size: 3,195 Bytes
92b19a3
306ced6
3b3f7c0
92b19a3
3b3f7c0
 
306ced6
3b3f7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3642f0d
306ced6
4d93140
306ced6
4d93140
306ced6
4d93140
306ced6
4d93140
306ced6
4d93140
306ced6
4d93140
306ced6
4d93140
306ced6
4d93140
306ced6
 
 
92b19a3
 
5dd5081
3b3f7c0
5dd5081
3b3f7c0
5a0e971
 
 
95ccd40
3b3f7c0
5d8063e
306ced6
 
5a0e971
5d8063e
3b3f7c0
 
306ced6
3b3f7c0
 
 
306ced6
3b3f7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3642f0d
3b3f7c0
 
 
 
 
3642f0d
 
 
 
 
 
 
 
3b3f7c0
 
 
 
 
 
 
306ced6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: mit
base_model: microsoft/resnet-18
tags:
- generated_from_trainer
datasets:
- gaborcselle/font-examples
metrics:
- accuracy
model-index:
- name: font-identifier
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.963265306122449
widget:
- src: hf_samples/ArchitectsDaughter-Regular_1.png
  example_title: Architects Daughter
- src: main/hf_samples/Courier_28.png
  example_title: Courier
- src: main/hf_samples/Helvetica_3.png
  example_title: Helvetica
- src: hf_samples/IBMPlexSans-Regular_25.png
  example_title: IBM Plex Sans
- src: hf_samples/Inter-Regular_43.png
  example_title: Inter
- src: hf_samples/Lobster-Regular_25.png
  example_title: Lobster
- src: hf_samples/Trebuchet_MS_11.png
  example_title: Trebuchet MS
- src: hf_samples/Verdana_Bold_43.png
  example_title: Verdana Bold
language:
- en
---


# font-identifier

This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
Result: Loss: 0.1172; Accuracy: 0.9633

Try with any screenshot of a font, or any of the examples in [the 'samples' subfolder of this repo](https://huggingface.co/gaborcselle/font-identifier/tree/main/hf_samples).

## Model description

Identify the font used in an image. Visual classifier based on ResNet18.

I built this project in 1 day, with a minute-by-minute journal [on Twitter/X](https://twitter.com/gabor/status/1722300841691103467), [on Pebble.social](https://pebble.social/@gabor/111376050835874755), and [on Threads.net](https://www.threads.net/@gaborcselle/post/CzZJpJCpxTz).

## Intended uses & limitations

Identify any of 48 standard fonts from the training data.

## Training and evaluation data

Trained and eval'd on the [gaborcselle/font-examples](https://huggingface.co/datasets/gaborcselle/font-examples) dataset (80/20 split).

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.0243        | 0.98  | 30   | 3.9884          | 0.0204   |
| 0.8309        | 10.99 | 338  | 0.5536          | 0.8551   |
| 0.3917        | 20.0  | 615  | 0.2353          | 0.9388   |
| 0.2298        | 30.99 | 953  | 0.1326          | 0.9633   |
| 0.1804        | 40.0  | 1230 | 0.1421          | 0.9571   |
| 0.1987        | 46.99 | 1445 | 0.1250          | 0.9673   |
| 0.1728        | 48.0  | 1476 | 0.1293          | 0.9633   |
| 0.1337        | 48.78 | 1500 | 0.1172          | 0.9633   |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.14.1