gaborcselle
commited on
Commit
·
6ff0951
1
Parent(s):
5e2183a
font-identifier
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -61,15 +61,32 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| 3.
|
71 |
-
|
|
72 |
-
| 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9040816326530612
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3626
|
36 |
+
- Accuracy: 0.9041
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 20
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 3.929 | 0.98 | 30 | 3.8215 | 0.0429 |
|
71 |
+
| 3.2162 | 1.98 | 61 | 2.9144 | 0.2816 |
|
72 |
+
| 2.4387 | 2.99 | 92 | 2.1019 | 0.4776 |
|
73 |
+
| 1.9404 | 4.0 | 123 | 1.5607 | 0.6041 |
|
74 |
+
| 1.5756 | 4.98 | 153 | 1.3012 | 0.6449 |
|
75 |
+
| 1.3374 | 5.98 | 184 | 1.0699 | 0.7102 |
|
76 |
+
| 1.1912 | 6.99 | 215 | 0.9145 | 0.7633 |
|
77 |
+
| 1.0716 | 8.0 | 246 | 0.7864 | 0.7898 |
|
78 |
+
| 0.9751 | 8.98 | 276 | 0.6894 | 0.8204 |
|
79 |
+
| 0.8211 | 9.98 | 307 | 0.6256 | 0.8510 |
|
80 |
+
| 0.8254 | 10.99 | 338 | 0.5563 | 0.8633 |
|
81 |
+
| 0.742 | 12.0 | 369 | 0.5149 | 0.8694 |
|
82 |
+
| 0.6949 | 12.98 | 399 | 0.4625 | 0.8878 |
|
83 |
+
| 0.6401 | 13.98 | 430 | 0.4799 | 0.8857 |
|
84 |
+
| 0.6304 | 14.99 | 461 | 0.3970 | 0.8980 |
|
85 |
+
| 0.6239 | 16.0 | 492 | 0.4016 | 0.9 |
|
86 |
+
| 0.5911 | 16.98 | 522 | 0.4271 | 0.8755 |
|
87 |
+
| 0.5764 | 17.98 | 553 | 0.3922 | 0.9 |
|
88 |
+
| 0.5461 | 18.99 | 584 | 0.3750 | 0.9 |
|
89 |
+
| 0.6236 | 19.51 | 600 | 0.3626 | 0.9041 |
|
90 |
|
91 |
|
92 |
### Framework versions
|