File size: 1,392 Bytes
8fb7890
 
 
15eecad
 
 
8fb7890
 
 
15eecad
8fb7890
a8c5f7d
8fb7890
 
 
a1fb8a4
 
 
 
8fb7890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8c5f7d
8fb7890
 
 
 
 
 
 
a8c5f7d
8fb7890
a8c5f7d
8fb7890
a8c5f7d
8fb7890
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
tags:
- text-regression
- joy
- emotion
- emotion intensity
language:
- en
widget:
- text: I am elated!
datasets:
- SemEval-2018-Task-1-Text-Regression-Task
co2_eq_emissions:
  emissions: 0.03988347977318191
---
# twitter-roberta-base-joy-intensity
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m on the SemEval 2018 - Task 1 Affect in Tweets (subtask: El-reg / text regression).

    Warning: Hosted inference API produces inaccurate values

# Model Trained Using AutoTrain

- Problem type: Single Column Regression
- Model ID: 72771139026
- CO2 Emissions (in grams): 0.0399

## Validation Metrics

- Loss: 0.013
- MSE: 0.013
- MAE: 0.088
- R2: 0.707
- RMSE: 0.116
- Explained Variance: 0.709

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I am elated!"}' https://api-inference.huggingface.co/models/garrettbaber/twitter-roberta-base-joy-intensity
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("garrettbaber/twitter-roberta-base-joy-intensity")

tokenizer = AutoTokenizer.from_pretrained("garrettbaber/twitter-roberta-base-joy-intensity")

inputs = tokenizer("I am elated!", return_tensors="pt")

outputs = model(**inputs)
```