gaurav-raul commited on
Commit
9ef7f18
·
verified ·
1 Parent(s): b0af295

End of training

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: stabilityai/stable-diffusion-3-medium-diffusers
3
+ library_name: diffusers
4
+ license: openrail++
5
+ tags:
6
+ - text-to-image
7
+ - text-to-image
8
+ - diffusers-training
9
+ - diffusers
10
+ - lora
11
+ - template:sd-lora
12
+ - stable-diffusion-xl
13
+ - stable-diffusion-xl-diffusers
14
+ instance_prompt: a photo of Toyota Corolla Cross XLE 2022 car
15
+ widget: []
16
+ ---
17
+
18
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
19
+ should probably proofread and complete it, then remove this comment. -->
20
+
21
+
22
+ # SDXL LoRA DreamBooth - gaurav-raul/toyota_corolla_cross_xle_2022_LoRA_sd3
23
+
24
+ <Gallery />
25
+
26
+ ## Model description
27
+
28
+ These are gaurav-raul/toyota_corolla_cross_xle_2022_LoRA_sd3 LoRA adaption weights for stabilityai/stable-diffusion-3-medium-diffusers.
29
+
30
+ The weights were trained using [DreamBooth](https://dreambooth.github.io/).
31
+
32
+ LoRA for the text encoder was enabled: False.
33
+
34
+ Special VAE used for training: None.
35
+
36
+ ## Trigger words
37
+
38
+ You should use a photo of Toyota Corolla Cross XLE 2022 car to trigger the image generation.
39
+
40
+ ## Download model
41
+
42
+ Weights for this model are available in Safetensors format.
43
+
44
+ [Download](gaurav-raul/toyota_corolla_cross_xle_2022_LoRA_sd3/tree/main) them in the Files & versions tab.
45
+
46
+
47
+
48
+ ## Intended uses & limitations
49
+
50
+ #### How to use
51
+
52
+ ```python
53
+ # TODO: add an example code snippet for running this diffusion pipeline
54
+ ```
55
+
56
+ #### Limitations and bias
57
+
58
+ [TODO: provide examples of latent issues and potential remediations]
59
+
60
+ ## Training details
61
+
62
+ [TODO: describe the data used to train the model]