File size: 31,252 Bytes
463ea04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "942fa22a-c776-4a44-bde9-75b7cb4202ba",
   "metadata": {},
   "source": [
    "## Outline\n",
    "\n",
    "1. We collect a dataset consisting of (user_question, answer_context, dialogue_history -> answer)\n",
    "2. We duplicate a small portion of dataset, where we remove answer_context\n",
    "2. We augment 'answer_context' with (non_answer) picked by a reasonably-performing QA system: variable ordering, consistent number of answers\n",
    "3. We train the model for exact-match generation \n",
    "- Also evaluate the exact-match ratio\n",
    "- Separately evaluate with full-context questions"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "766c4c50-6e72-41b2-b6d7-1e4c3c309a68",
   "metadata": {},
   "source": [
    "### 1. Positive contexts collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "33d57a85-c079-4cf1-b9ad-3b00ce916720",
   "metadata": {},
   "outputs": [],
   "source": [
    "import datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0434a258-27ca-4cec-bb85-60673fea2b16",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using custom data configuration default-8d557d41fc795903\n",
      "Found cached dataset json (/home/xstefan3/.cache/huggingface/datasets/json/default-8d557d41fc795903/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "366db7856ce341a6854a08c244aa5db1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "canard_train = datasets.load_dataset(\"json\", data_files=\"datasets/CANARD_Release/train.json\")[\"train\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "73cf434e-8d36-4680-a80d-a9304ef801f2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dataset({\n",
       "    features: ['History', 'QuAC_dialog_id', 'Question', 'Question_no', 'Rewrite'],\n",
       "    num_rows: 31526\n",
       "})"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "canard_train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "02eba563-5810-4b0a-b130-920d163a54ac",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'History': ['Johnny Unitas', '1964 MVP season'],\n",
       " 'QuAC_dialog_id': 'C_2ba58216460d43aa986fc0e897537239_0',\n",
       " 'Question': 'what team did unitas play for',\n",
       " 'Question_no': 1,\n",
       " 'Rewrite': 'what team did Johnny Unitas play for?'}"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "canard_train[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b73c5e59-2430-4b00-aa8b-0f926729ada1",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset quac (/home/xstefan3/.cache/huggingface/datasets/quac/plain_text/1.1.0/4170258e7e72d7c81bd6441b3f3489ea1544f0ff226ce61e22bb00c6e9d01fb6)\n"
     ]
    }
   ],
   "source": [
    "quac_train = datasets.load_dataset(\"quac\", split=\"train\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "21e21544-b65c-433d-86c1-30d4507088e7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>wikipedia_page_title</th>\n",
       "      <th>background</th>\n",
       "      <th>section_title</th>\n",
       "      <th>context</th>\n",
       "      <th>turn_ids</th>\n",
       "      <th>questions</th>\n",
       "      <th>followups</th>\n",
       "      <th>yesnos</th>\n",
       "      <th>answers</th>\n",
       "      <th>orig_answers</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>dialogue_id</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>C_69758fcdfc1f46baba0e92c0f3b0919c_1</th>\n",
       "      <td>Malayali</td>\n",
       "      <td>The Malayali people or Keralite people (also s...</td>\n",
       "      <td>Geographic distribution and population</td>\n",
       "      <td>According to the Indian census of 2001, there ...</td>\n",
       "      <td>[C_69758fcdfc1f46baba0e92c0f3b0919c_1_q#0, C_6...</td>\n",
       "      <td>[Where is Malayali located?, What other langua...</td>\n",
       "      <td>[2, 1, 1, 1, 1, 1, 1]</td>\n",
       "      <td>[2, 2, 2, 2, 2, 0, 2]</td>\n",
       "      <td>{'texts': [['30,803,747 speakers of Malayalam ...</td>\n",
       "      <td>{'texts': ['30,803,747 speakers of Malayalam i...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>C_69758fcdfc1f46baba0e92c0f3b0919c_0</th>\n",
       "      <td>Malayali</td>\n",
       "      <td>The Malayali people or Keralite people (also s...</td>\n",
       "      <td>Language and literature</td>\n",
       "      <td>Malayalam is the language spoken by the Malaya...</td>\n",
       "      <td>[C_69758fcdfc1f46baba0e92c0f3b0919c_0_q#0, C_6...</td>\n",
       "      <td>[what language do they speak?, Do they speak a...</td>\n",
       "      <td>[0, 0, 0, 0, 0, 0, 0]</td>\n",
       "      <td>[2, 2, 2, 2, 2, 2, 2]</td>\n",
       "      <td>{'texts': [['Malayalam is the language spoken ...</td>\n",
       "      <td>{'texts': ['Malayalam is the language spoken b...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                     wikipedia_page_title  \\\n",
       "dialogue_id                                                 \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1             Malayali   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0             Malayali   \n",
       "\n",
       "                                                                             background  \\\n",
       "dialogue_id                                                                               \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  The Malayali people or Keralite people (also s...   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  The Malayali people or Keralite people (also s...   \n",
       "\n",
       "                                                               section_title  \\\n",
       "dialogue_id                                                                    \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  Geographic distribution and population   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0                 Language and literature   \n",
       "\n",
       "                                                                                context  \\\n",
       "dialogue_id                                                                               \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  According to the Indian census of 2001, there ...   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  Malayalam is the language spoken by the Malaya...   \n",
       "\n",
       "                                                                               turn_ids  \\\n",
       "dialogue_id                                                                               \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  [C_69758fcdfc1f46baba0e92c0f3b0919c_1_q#0, C_6...   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  [C_69758fcdfc1f46baba0e92c0f3b0919c_0_q#0, C_6...   \n",
       "\n",
       "                                                                              questions  \\\n",
       "dialogue_id                                                                               \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  [Where is Malayali located?, What other langua...   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  [what language do they speak?, Do they speak a...   \n",
       "\n",
       "                                                  followups  \\\n",
       "dialogue_id                                                   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  [2, 1, 1, 1, 1, 1, 1]   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  [0, 0, 0, 0, 0, 0, 0]   \n",
       "\n",
       "                                                     yesnos  \\\n",
       "dialogue_id                                                   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  [2, 2, 2, 2, 2, 0, 2]   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  [2, 2, 2, 2, 2, 2, 2]   \n",
       "\n",
       "                                                                                answers  \\\n",
       "dialogue_id                                                                               \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  {'texts': [['30,803,747 speakers of Malayalam ...   \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  {'texts': [['Malayalam is the language spoken ...   \n",
       "\n",
       "                                                                           orig_answers  \n",
       "dialogue_id                                                                              \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_1  {'texts': ['30,803,747 speakers of Malayalam i...  \n",
       "C_69758fcdfc1f46baba0e92c0f3b0919c_0  {'texts': ['Malayalam is the language spoken b...  "
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "quac_train_df = quac_train.to_pandas().set_index(\"dialogue_id\", drop=True)\n",
    "quac_train_df.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "01b2994d-3ba3-4ce0-9531-20e1858ee878",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([array(['what team did unitas play for',\n",
       "              'how many games did the colts win',\n",
       "              'who did they play in the playoffs', 'did they win the super bowl',\n",
       "              'who did they play in the super bowl', 'what were unitas stats'],\n",
       "             dtype=object)                                                       ,\n",
       "       {'texts': array([array(['The Colts'], dtype=object),\n",
       "              array(['the Colts ran off 10 straight victories to finish with a 12-2 record.'],\n",
       "                    dtype=object)                                                             ,\n",
       "              array(['Cleveland Browns'], dtype=object),\n",
       "              array(['losing 27-0.'], dtype=object),\n",
       "              array(['the Packers.'], dtype=object),\n",
       "              array(['Gary Cuozzo also suffered a season-ending injury the following'],\n",
       "                    dtype=object)                                                      ],\n",
       "             dtype=object), 'answer_starts': array([array([920], dtype=int32), array([142], dtype=int32),\n",
       "              array([552], dtype=int32), array([604], dtype=int32),\n",
       "              array([1487], dtype=int32), array([1292], dtype=int32)],\n",
       "             dtype=object)}                                                                              ],\n",
       "      dtype=object)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "quac_train_df.loc['C_2ba58216460d43aa986fc0e897537239_0'][[\"questions\", \"answers\"]].values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "e680d1ec-ca04-452c-ad44-eae3b43559cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "def answer_for_question(questions: dict, answers: list, question: str) -> str:\n",
    "    answers = [anss[0] for anss in answers[\"texts\"]]\n",
    "    # print(questions)\n",
    "    # print(question)\n",
    "    assert question in questions\n",
    "    assert len(answers) == len(questions)\n",
    "    \n",
    "    return next(a for i, a in enumerate(answers) if questions[i] == question)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "9a58cc80-a4b8-4b59-b5c3-e8b095e2c281",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "786095c0ea3e432dac7dd1912cb3832d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/31526 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "canard_train = canard_train.map(lambda row: \n",
    "{\n",
    "    \"true_contexts\": quac_train_df.loc[row[\"QuAC_dialog_id\"]][\"context\"],\n",
    "    \"true_page\": quac_train_df.loc[row[\"QuAC_dialog_id\"]][\"wikipedia_page_title\"],\n",
    "    \"answer\": answer_for_question(*quac_train_df.loc[row[\"QuAC_dialog_id\"]][[\"questions\", \"answers\"]].values, row[\"Question\"])\n",
    "})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "d894b2ca-2d74-412d-bdb3-fc42637dea18",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'History': ['Johnny Unitas', '1964 MVP season'],\n",
       " 'QuAC_dialog_id': 'C_2ba58216460d43aa986fc0e897537239_0',\n",
       " 'Question': 'what team did unitas play for',\n",
       " 'Question_no': 1,\n",
       " 'Rewrite': 'what team did Johnny Unitas play for?',\n",
       " 'true_contexts': \"The 1964 season would see the Colts return to the top of the Western Conference. After dropping their season opener to the Minnesota Vikings, the Colts ran off 10 straight victories to finish with a 12-2 record. The season was one of Unitas' best as he finished with 2,824 yards passing, a league-best 9.26 yards per pass attempt, 19 touchdown passes and only 6 interceptions. He was named the NFL's Most Valuable Player by the AP and UPI for a second time. However, the season would end on a disappointing note for the Colts as they were upset by the Cleveland Browns in the 1964 NFL Championship Game, losing 27-0.  Unitas resumed his torrid passing in 1965, as he threw for 2,530 yards, 23 touchdowns and finished with a league-high and career best 97.1 passer rating. But he was lost for the balance of the season due to a knee injury in a week 12 loss to the Bears. More postseason heartbreak would follow in 1965. The Colts and Packers finished in a tie for first place in the Western Conference and a one-game playoff was played in Green Bay to decide who would be the conference representative in the 1965 NFL Championship Game. The Colts lost in overtime 13-10 due in large part to a game-tying field goal by Don Chandler that many say was incorrectly ruled good. Backup quarterback Gary Cuozzo also suffered a season-ending injury the following week and it would be running back Tom Matte who filled in as the emergency QB for the regular-season finale and the playoff loss to the Packers.  Unitas, healthy once more, threw for 2748 yards and 22 touchdowns in 1966 in a return to Pro Bowl form. However, he posted a league-high 24 interceptions. CANNOTANSWER\",\n",
       " 'true_page': 'Johnny Unitas',\n",
       " 'answer': 'The Colts'}"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "canard_train[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "0dfa9659-93b9-4264-9693-08b3410c869e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(7881, 31526)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import random\n",
    "\n",
    "canard_negative_subsample = canard_train.select(random.sample(list(range(len(canard_train))), k=len(canard_train)//4))\n",
    "\n",
    "len(canard_negative_subsample), len(canard_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "50ed6cc6-0d60-4cd5-b284-899f179420e4",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9ab7324375c04ead8d6f97164a56b8f7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/7881 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "canard_negative_subsample = canard_negative_subsample.map(lambda row: {\"true_contexts\": \"\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "ee19b78e-cdf0-404c-87a3-37d4e179d988",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'History': [\"Dinesh D'Souza\",\n",
       "  \"Hillary's America: The Secret History of the Democratic Party\",\n",
       "  \"Is Hillary's America a documentary?\",\n",
       "  \"On July 25, 2016, D'Souza released the documentary film Hillary's America:\",\n",
       "  'Was it released in theaters?',\n",
       "  \"I don't know.\",\n",
       "  'What was the documentary about?',\n",
       "  'The film criticizes the Democratic Party and Hillary Clinton,'],\n",
       " 'QuAC_dialog_id': 'C_31bfdcd402d44289a6206d9b34765869_0',\n",
       " 'Question': 'How did the critics feel about it?',\n",
       " 'Question_no': 4,\n",
       " 'Rewrite': \"How did the critics feel about the film Hillary's America?\",\n",
       " 'true_contexts': '',\n",
       " 'true_page': \"Dinesh D'Souza\",\n",
       " 'answer': 'The film was universally panned by professional film critics.'}"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "canard_negative_subsample[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "4f3869f7-3b9d-4efc-b194-4e2f2cb38798",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "39407"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "canard_train = datasets.concatenate_datasets([canard_train, canard_negative_subsample])\n",
    "\n",
    "len(canard_train)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2fd2f319-764a-4b31-baad-ea9a4b037e1d",
   "metadata": {},
   "source": [
    "### 2. Negative contexts collection\n",
    "\n",
    "We use BM25 to collect a realistic set of retrieves given by the IR search"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "92b7428e-8975-49b0-9482-539a454a5f9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from BM25_irsystem import BM25PlusSystem, SimpleDocProcessing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "35e76ccb-a2ca-4cfe-b8a1-71c665e237f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pv211_utils.trec.entities import TrecDocumentBase, TrecQueryBase"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "92d0e8e0-e7ff-48ad-a35c-543ffdd76d7f",
   "metadata": {},
   "outputs": [],
   "source": [
    "documents = {str(i): TrecDocumentBase(document_id=i, body=context) for i, context in enumerate(quac_train_df.context)}\n",
    "\n",
    "irsystem = BM25PlusSystem(documents, preprocessing=SimpleDocProcessing())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "0e906f2f-b2b6-4f78-bd98-254cb1279181",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_negative_question_responses(question: str, num_responses: 5):\n",
    "    # TODO: add contexts' titles\n",
    "    unique_responses = []\n",
    "    # question = \"What team did Johnny Unitas play for?\"\n",
    "\n",
    "    for response_doc in irsystem.search(TrecQueryBase(query_id=0, title=\"\", body=question, narrative=\"\")):\n",
    "        if response_doc.body not in unique_responses:\n",
    "            unique_responses.append(response_doc.body)\n",
    "        if len(unique_responses) >= num_responses:\n",
    "            break\n",
    "\n",
    "    return unique_responses"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "f3587fed-f244-45f0-af28-6e5e36ac15b9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5318a11fc3484b188ef6c15a6b952d95",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/39407 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Saving the dataset (0/1 shards):   0%|          | 0/39407 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "canard_train_augm = canard_train.map(\n",
    "    lambda row: {\"retrieved_contexts\": get_negative_question_responses(row[\"Question\"], num_responses=4) \n",
    "                                                  if row[\"true_contexts\"] else get_negative_question_responses(row[\"Question\"], num_responses=5)},\n",
    "    # keep_in_memory=True,\n",
    "    # num_proc=60\n",
    ")\n",
    "canard_train_augm.save_to_disk(\"canard_train_augm_full.hf\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "b244a1b0-58c9-408f-91c1-10a29ccd43ce",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dataset({\n",
       "    features: ['History', 'QuAC_dialog_id', 'Question', 'Question_no', 'Rewrite', 'true_contexts', 'true_page', 'answer', 'retrieved_contexts'],\n",
       "    num_rows: 39407\n",
       "})"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "datasets.load_from_disk(\"canard_train_augm_full.hf\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2c4c5925-9abb-4d95-941b-6634f1bdb597",
   "metadata": {},
   "source": [
    "## Test dataset generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "4c5f5447-38fc-4f7d-8b46-292de36bba8a",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using custom data configuration default-a7ce477a9c57a36e\n",
      "Found cached dataset json (/home/xstefan3/.cache/huggingface/datasets/json/default-a7ce477a9c57a36e/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ece835047b44454a9f31ff14f6986640",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset quac (/home/xstefan3/.cache/huggingface/datasets/quac/plain_text/1.1.0/4170258e7e72d7c81bd6441b3f3489ea1544f0ff226ce61e22bb00c6e9d01fb6)\n"
     ]
    }
   ],
   "source": [
    "import datasets\n",
    "\n",
    "# make sure that we test with conversations that the model has not seen before\n",
    "canard_test = datasets.load_dataset(\"json\", data_files=\"datasets/CANARD_Release/test.json\")[\"train\"]\n",
    "quac_test = datasets.load_dataset(\"quac\", split=\"validation\")\n",
    "quac_test_df = quac_test.to_pandas().set_index(\"dialogue_id\", drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "68f61770-cb34-43f5-aa51-6e1a68e0d362",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'History': ['Ursula K. Le Guin',\n",
       "  'Influences',\n",
       "  'what influenced her?',\n",
       "  'Le Guin was influenced by fantasy writers,',\n",
       "  'who were they?',\n",
       "  'J. R. R. Tolkien, by science fiction writers,',\n",
       "  'how did they influence her?',\n",
       "  'her influences, she replied: Once I learned to read, I read everything. I read all the famous fantasies'],\n",
       " 'QuAC_dialog_id': 'C_420bfcf5d8b344a480ac654f08ee55ad_1',\n",
       " 'Question': 'which other fantasy writer influenced her?',\n",
       " 'Question_no': 4,\n",
       " 'Rewrite': 'Besides J. R. R. Tolkien which other fantasy writer influenced Le Guin?'}"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# check the match on QuAC_dialog_id\n",
    "canard_test[102]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "8f21d07e-9d94-4d29-bb6f-a4bbd5ef833e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "wikipedia_page_title                                    Ursula K. Le Guin\n",
       "background              Ursula Kroeber Le Guin (; October 21, 1929 - J...\n",
       "section_title                                                  Influences\n",
       "context                 Le Guin was influenced by fantasy writers, inc...\n",
       "turn_ids                [C_420bfcf5d8b344a480ac654f08ee55ad_1_q#0, C_4...\n",
       "questions               [what influenced her?, who were they?, how did...\n",
       "followups                                     [0, 0, 0, 0, 1, 0, 0, 0, 1]\n",
       "yesnos                                        [2, 2, 2, 2, 2, 0, 2, 2, 2]\n",
       "answers                 {'texts': [['Le Guin was influenced by fantasy...\n",
       "orig_answers            {'texts': ['Le Guin was influenced by fantasy ...\n",
       "Name: C_420bfcf5d8b344a480ac654f08ee55ad_1, dtype: object"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "quac_test_df.loc[\"C_420bfcf5d8b344a480ac654f08ee55ad_1\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "798ad24f-1cb3-4b2d-8fe0-d92e4aa97ff5",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at /home/xstefan3/.cache/huggingface/datasets/json/default-a7ce477a9c57a36e/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/cache-e93159eee5490cc9.arrow\n"
     ]
    }
   ],
   "source": [
    "canard_test = canard_test.map(lambda row: \n",
    "{\n",
    "    \"true_contexts\": quac_test_df.loc[row[\"QuAC_dialog_id\"]][\"context\"],\n",
    "    \"true_page\": quac_test_df.loc[row[\"QuAC_dialog_id\"]][\"wikipedia_page_title\"],\n",
    "    \"answer\": answer_for_question(*quac_test_df.loc[row[\"QuAC_dialog_id\"]][[\"questions\", \"answers\"]].values, row[\"Question\"])\n",
    "})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cc8fda7c-c140-438d-ac16-7df672d492eb",
   "metadata": {},
   "source": [
    "### 2. Negative contexts collection\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "500d28a4-2dde-45ca-a12b-48d6ceefb7fd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# We initialize a new IR system for response - pesimistic scenario\n",
    "from BM25_irsystem import BM25PlusSystem, SimpleDocProcessing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "de060c5b-00eb-4d8a-b645-fedfd4ec0b29",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pv211_utils.trec.entities import TrecDocumentBase, TrecQueryBase"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "63b93efa-5e2d-4bb9-a02d-3cdc23ee1e42",
   "metadata": {},
   "outputs": [],
   "source": [
    "documents = {str(i): TrecDocumentBase(document_id=i, body=context) for i, context in enumerate(quac_test_df.context)}\n",
    "\n",
    "irsystem = BM25PlusSystem(documents, preprocessing=SimpleDocProcessing())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "923bfc60-6ac0-4c9c-9f78-c2852541a7fc",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5a77c28c178243888d2672ac3f133078",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/5571 [00:00<?, ?ex/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "db0ef84b89d841d7b75942cb31a3c3ac",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Saving the dataset (0/1 shards):   0%|          | 0/5571 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "canard_test_augm = canard_test.map(\n",
    "    lambda row: {\"retrieved_contexts\": get_negative_question_responses(row[\"Question\"], num_responses=4) \n",
    "                                                  if row[\"true_contexts\"] else get_negative_question_responses(row[\"Question\"], num_responses=5)},\n",
    "    # keep_in_memory=True,\n",
    "    # num_proc=60\n",
    ")\n",
    "canard_test_augm.save_to_disk(\"canard_test_augm_full.hf\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}